Model microemulsion networks of oil droplets stabilized by non ionic
surfactant and telechelic polymer C18-PEO(10k)-C18 have been studied for two
droplet-to-polymer size ratios. The rheological properties of the networks have
been measured as a function of network connectivity and can be described in
terms of simple percolation laws. The network structure has been characterised
by Small Angle Neutron Scattering. A Reverse Monte Carlo approach is used to
demonstrate the interplay of attraction and repulsion induced by the copolymer.
These model networks are then used as matrix for the incorporation of silica
nanoparticles (R=10nm), individual dispersion being checked by scattering. A
strong impact on the rheological properties is found for silica volume
fractions up to 9%