248 research outputs found

    Electric-field-induced transport of microspheres in the isotropic and chiral nematic phase of liquid crystals

    Get PDF
    The application of an electric field to microspheres suspended in a liquid crystal, causes particle translation in a plane perpendicular to the applied field direction. Depending on applied electric field amplitude and frequency, a wealth of different motion modes may be observed above a threshold, which can lead to linear, circular or random particle trajectories. We present the stability diagram for these different translational modes of particles suspended in the isotropic and the chiral nematic phase of a liquid crystal, and investigate the angular velocity, circular diameter, and linear velocity as a function of electric field amplitude and frequency. In the isotropic phase a narrow field amplitude-frequency regime is observed to exhibit circular particle motion whose angular velocity increases with applied electric field amplitude, but is independent of applied frequency. The diameter of the circular trajectory decreases with field amplitudes as well as frequency. In the cholesteric phase linear as well as circular particle motion is observed. The former exhibits an increasing velocity with field amplitude, while decreasing with frequency. For the latter, the angular velocity exhibits an increase with field amplitude and frequency. The rotational sense of the particles on a circular trajectory in the chiral nematic phase is independent of the helicity of the liquid crystalline structure, as is demonstrated by employing a cholesteric twist inversion compound

    Structural properties of crumpled cream layers

    Full text link
    The cream layer is a complex heterogeneous material of biological origin which forms spontaneously at the air-milk interface. Here, it is studied the crumpling of a single cream layer packing under its own weight at room temperature in three-dimensional space. The structure obtained in these circumstances has low volume fraction and anomalous fractal dimensions. Direct means and noninvasive NMR imaging technique are used to investigate the internal and external structure of these systems.Comment: 9 pages, 4 figures, accepted in J. Phys. D: Appl. Phy

    Numerical Confirmation of Late-time t^{1/2} Growth in Three-dimensional Phase Ordering

    Full text link
    Results for the late-time regime of phase ordering in three dimensions are reported, based on numerical integration of the time-dependent Ginzburg-Landau equation with nonconserved order parameter at zero temperature. For very large systems (7003700^3) at late times, t150,t \ge 150, the characteristic length grows as a power law, R(t)tnR(t) \sim t^n, with the measured nn in agreement with the theoretically expected result n=1/2n=1/2 to within statistical errors. In this time regime R(t)R(t) is found to be in excellent agreement with the analytical result of Ohta, Jasnow, and Kawasaki [Phys. Rev. Lett. {\bf 49}, 1223 (1982)]. At early times, good agreement is found between the simulations and the linearized theory with corrections due to the lattice anisotropy.Comment: Substantially revised and enlarged, submitted to PR

    Non-isothermal model for the direct isotropic/smectic-A liquid crystalline transition

    Full text link
    An extension to a high-order model for the direct isotropic/smectic-A liquid crystalline phase transition was derived to take into account thermal effects including anisotropic thermal diffusion and latent heat of phase-ordering. Multi-scale multi-transport simulations of the non-isothermal model were compared to isothermal simulation, showing that the presented model extension corrects the standard Landau-de Gennes prediction from constant growth to diffusion-limited growth, under shallow quench/undercooling conditions. Non-isothermal simulations, where meta-stable nematic pre-ordering precedes smectic-A growth, were also conducted and novel non-monotonic phase-transformation kinetics observed.Comment: First revision: 20 pages, 7 figure

    The great melting pot. Common sole population connectivity assessed by otolith and water fingerprints

    Get PDF
    Quantifying the scale and importance of individual dispersion between populations and life stages is a key challenge in marine ecology. The common sole (Solea solea), an important commercial flatfish in the North Sea, Atlantic Ocean and the Mediterranean Sea, has a marine pelagic larval stage, a benthic juvenile stage in coastal nurseries (lagoons, estuaries or shallow marine areas) and a benthic adult stage in deeper marine waters on the continental shelf. To date, the ecological connectivity among these life stages has been little assessed in the Mediterranean. Here, such an assessment is provided for the first time for the Gulf of Lions, NW Mediterranean, based on a dataset on otolith microchemistry and stable isotopic composition as indicators of the water masses inhabited by individual fish. Specifically, otolith Ba/Ca and Sr/Ca profiles, and delta C-13 and delta O-18 values of adults collected in four areas of the Gulf of Lions were compared with those of young-of-the-year collected in different coastal nurseries. Results showed that a high proportion of adults (>46%) were influenced by river inputs during their larval stage. Furthermore Sr/Ca ratios and the otolith length at one year of age revealed that most adults (similar to 70%) spent their juvenile stage in nurseries with high salinity, whereas the remainder used brackish environments. In total, data were consistent with the use of six nursery types, three with high salinity (marine areas and two types of highly saline lagoons) and three brackish (coastal areas near river mouths, and two types of brackish environments), all of which contributed to the replenishment of adult populations. These finding implicated panmixia in sole population in the Gulf of Lions and claimed for a habitat integrated management of fisherie

    Using tourism free-choice learning experiences to promote environmentally sustainable behaviour: The role of post-visit ‘action resources’

    Get PDF
    This paper argues the need for the providers of ecotourism and other free‐choice environmental learning experiences to promote the adoption of environmentally sustainable actions beyond their own sites, when visitors return to their home environments. Previous research indicates that although visitors often leave such experiences with a heightened awareness of conservation issues and intentions to adopt environmentally responsible behaviours, only a minority translate these intentions into real actions. Building on research and theory in relation to visitor experiences in free‐choice learning environments, the paper identifies three different stages in the educational process and proposes a strategy for facilitating the translation of visitors' behavioural intentions into the adoption of sustainable actions through the provision of post‐visit action resources

    Non-Isothermal Model for Nematic Spherulite Growth

    Get PDF
    A computational study of the growth of two-dimensional nematic spherulites in an isotropic phase was performed using a Landau-de Gennes type quadrupolar ensor order parameter model for the first-order isotropic/nematic transition of 5CB (pentyl-cyanobiphenyl). An energy balance, taking anisotropy into account, was derived and incorporated into the time-dependent model. Growth laws were determined for two different spherulite morphologies of the form tn, with and without the inclusion of thermal effects. Results show that incorporation of the thermal energy balance correctly predicts the transition of the growth law exponent from the volume driven regime (n=1) to the thermally limited regime (approaching n=0.5), agreeing well with experimental observations. An interfacial nemato-dynamic model is used to gain insight into the interactions that result in the progression of different spherulite growth regimes

    How is genetic testing evaluated? A systematic review of the literature

    Get PDF
    open8Given the rapid development of genetic tests, an assessment of their benefits, risks, and limitations is crucial for public health practice. We performed a systematic review aimed at identifying and comparing the existing evaluation frameworks for genetic tests. We searched PUBMED, SCOPUS, ISI Web of Knowledge, Google Scholar, Google, and gray literature sources for any documents describing such frameworks. We identified 29 evaluation frameworks published between 2000 and 2017, mostly based on the ACCE Framework (n = 13 models), or on the HTA process (n = 6), or both (n = 2). Others refer to the Wilson and Jungner screening criteria (n = 3) or to a mixture of different criteria (n = 5). Due to the widespread use of the ACCE Framework, the most frequently used evaluation criteria are analytic and clinical validity, clinical utility and ethical, legal and social implications. Less attention is given to the context of implementation. An economic dimension is always considered, but not in great detail. Consideration of delivery models, organizational aspects, and consumer viewpoint is often lacking. A deeper analysis of such context-related evaluation dimensions may strengthen a comprehensive evaluation of genetic tests and support the decision-making process.openPitini, Erica*; de Vito, Corrado; Marzuillo, Carolina; D’Andrea, Elvira; Rosso, Annalisa; Federici, Antonio; Di Maria, Emilio; Villari, PaoloPitini, Erica; de Vito, Corrado; Marzuillo, Carolina; D’Andrea, Elvira; Rosso, Annalisa; Federici, Antonio; Di Maria, Emilio; Villari, Paol
    corecore