584 research outputs found

    Geoneutrinos in Borexino

    Full text link
    This paper describes the Borexino detector and the high-radiopurity studies and tests that are integral part of the Borexino technology and development. The application of Borexino to the detection and studies of geoneutrinos is discussed.Comment: Conference: Neutrino Geophysics Honolulu, Hawaii December 14-16, 200

    Oral bioavailability enhancement of doxazosin mesylate: Nanosuspension versus self-nanoemulsifying drug delivery systems

    Get PDF
    Background and purpose Doxazosin mesylate (DOX) is an antihypertensive drug that possesses poor water solubility and, hence, poor release properties. Both nanosuspensions and self-nanoemulsifying drug delivery systems (SNEDDS) are becoming nanotechnology techniques for the enhancement of water solubility of different drugs. Experimental approach The study\u27s goal was to identify the best drug delivery system able to enhance the release and antihypertensive effect of DOX by comparing the physical characteristics such as particle size, zeta potential, entrapment efficiency, release rate, and main arterial blood pressure of DOX-loaded nanosuspensions and SNEDDS in liquid and solid form. Key results DOX nanosuspension preparation had a particle size of 385±13 nm, poly-dispersity index of 0.049±3, zeta potential of 50 ± 4 mV and drug release after 20 min (91±0.43 %). Liquid SNEDDS had a droplet size of 224±15 nm, poly-dispersity index of (0.470±0.01), zeta potential of -5±0.10 mV and DR20min of 93±4 %. Solid SEDDS showed particle size of 79±14 nm, poly-dispersity index of 1±0.00, a zeta potential of -18 ±0.26 mv and DR20min of 100 ±2.72 %. Conclusion Finally, in terms of the mean arterial blood pressure lowering, solid SNEDDS performed better effect than both liquid SNEDDS and nanosuspension (P >0.05)

    GNO Solar Neutrino Observations: Results for GNOI

    Get PDF
    We report the first GNO solar neutrino results for the measuring period GNOI, solar exposure time May 20, 1998 till January 12, 2000. In the present analysis, counting results for solar runs SR1 - SR19 were used till April 4, 2000. With counting completed for all but the last 3 runs (SR17 - SR19), the GNO I result is [65.8 +10.2 -9.6 (stat.) +3.4 -3.6 (syst.)]SNU (1sigma) or [65.8 + 10.7 -10.2 (incl. syst.)]SNU (1sigma) with errors combined. This may be compared to the result for Gallex(I-IV), which is [77.5 +7.6 -7.8 (incl. syst.)] SNU (1sigma). A combined result from both GNOI and Gallex(I-IV) together is [74.1 + 6.7 -6.8 (incl. syst.)] SNU (1sigma).Comment: submitted to Physics Letters B, June 2000. PACS: 26.65. +t ; 14.60 Pq. Corresponding author: [email protected] ; [email protected]

    A New Limit on the Neutrinoless DBD of 130Te

    Full text link
    We report the present results of CUORICINO a cryogenic experiment on neutrinoless double beta decay (DBD) of 130Te consisting of an array of 62 crystals of TeO2 with a total active mass of 40.7 kg. The array is framed inside of a dilution refrigerator, heavily shielded against environmental radioactivity and high-energy neutrons, and operated at a temperature of ~8 mK in the Gran Sasso Underground Laboratory. Temperature pulses induced by particle interacting in the crystals are recorded and measured by means of Neutron Transmutation Doped thermistors. The gain of each bolometer is stabilized with voltage pulses developed by a high stability pulse generator across heater resistors put in thermal contact with the absorber. The calibration is performed by means of two thoriated wires routinely inserted in the set-up. No evidence for a peak indicating neutrinoless DBD of 130Te is detected and a 90% C.L. lower limit of 1.8E24 years is set for the lifetime of this process. Taking largely into account the uncertainties in the theoretical values of nuclear matrix elements, this implies an upper boud on the effective mass of the electron neutrino ranging from 0.2 to 1.1 eV. This sensitivity is similar to those of the 76Ge experiments.Comment: 4 pages, 2 figure

    PULEX: Influence of environment radiation background on biochemistry and biology of cultured cells and on their response to genotoxic agents

    Get PDF
    Some years ago we performed two experiments aimed at studying the influence of the background radiation on living matter by exploiting the low radiation background environment in the underground Gran Sasso Laboratory of the INFN. Their results were consistent with the hypothesis that the “normal” background radiation determines an adaptive response, although they cannot be considered conclusive. PULEX-3 (the third experiment of the series) is aimed at comparing the effects of different background radiation environments on metabolism of cultured mammalian cells, with substantial improvements with respect to the preceding ones. The experiment was designed to minimize variabilities, by maintaining two cultures of Chinese hamster V79 cells in exponential growth for up to ten months in the underground Gran Sasso Laboratory (LNGS), while two other cultures were maintained in parallel in a biological laboratory installed at the LNGS outside the tunnel. Exposure due to γ-rays was reduced by a factor of about 10 in the underground laboratory while the Rn concentration was small in both cases. After ten months the cells grown in the underground laboratory, compared to those grown in the external one, exhibited: i) a significantly lower capacity to scavenge reactive oxygen species (ROS), and ii) an increased sensitivity to the mutagenic effect of rays. Since the probability that this finding is due to casual induction of radiosensitive mutants is extremely low, it corroborates the hypothesis that cells grown in a “normal” background radiation environment exhibit an adaptive response when challenged with genotoxic agents, which is lost after many generations in a low background radiation environment

    Search for electron antineutrino interactions with the Borexino Counting Test Facility at Gran Sasso

    Full text link
    Electron antineutrino interactions above the inverse beta decay energy of protons (E_\bar{\nu}_e>1.8) where looked for with the Borexino Counting Test Facility (CTF). One candidate event survived after rejection of background, which included muon-induced neutrons and random coincidences. An upper limit on the solar νˉe\bar{\nu}_{e} flux, assumed having the 8^8B solar neutrino energy spectrum, of 1.1×105\times10^{5} cm2^{-2}~s1^{-1} (90% C.L.) was set with a 7.8 ton ×\times year exposure. This upper limit corresponds to a solar neutrino transition probability, νeνˉe\nu_{e} \to \bar{\nu}_{e}, of 0.02 (90% C.L.). Predictions for antineutrino detection with Borexino, including geoneutrinos, are discussed on the basis of background measurements performed with the CTF.Comment: 10 pages, 9 figures, 5 table

    Complete results for five years of GNO solar neutrino observations

    Get PDF
    We report the complete GNO solar neutrino results for the measuring periods GNO III, GNO II, and GNO I. The result for GNO III (last 15 solar runs) is [54.3 + 9.9 - 9.3 (stat.)+- 2.3 (syst.)] SNU (1 sigma) or [54.3 + 10.2 - 9.6 (incl. syst.)] SNU (1 sigma) with errors combined. The GNO experiment is now terminated after altogether 58 solar exposure runs that were performed between May 20, 1998 and April 9, 2003. The combined result for GNO (I+II+III) is [62.9 + 5.5 - 5.3 (stat.) +- 2.5 (syst.)] SNU (1 sigma) or [62.9 + 6.0 - 5.9] SNU (1 sigma) with errors combined in quadrature. Overall, gallium based solar observations at LNGS (first in GALLEX, later in GNO) lasted from May 14, 1991 through April 9, 2003. The joint result from 123 runs in GNO and GALLEX is [69.3 +- 5.5 (incl. syst.)] SNU (1 sigma). The distribution of the individual run results is consistent with the hypothesis of a neutrino flux that is constant in time. Implications from the data in particle- and astrophysics are reiterated.Comment: 22 pages incl. 9 Figures and 8 Tables. to appear in: Physics Letters B (accepted April 13, 2005) PACS: 26.65.+t ; 14.60.P

    A Cryogenic Underground Observatory for Rare Events: Cuore, an Update

    Get PDF
    CUORE is a proposed tightly packed array of 1000 TeO_{2} bolometers, each being a cube 5 cm on a side with a mass of 750 gms. The array consists of 25 vertical towers, arranged in a square, of 5 towers by 5 towers, each containing 10 layers of 4 crystals. The design of the detector is optimized for ultralow- background searches for neutrinoless double beta decay of ^{130}Te (33.8% abundance), cold dark matter, solar axions, and rare nuclear decays. A preliminary experiment involving 20 crystals of various sizes (MIBETA) has been completed, and a single CUORE tower is being constructed as a smaller scale experiment called CUORICINO. The expected performance and sensitivity, based on Monte Carlo simulations and extrapolations of present results, are reported.Comment: in press: Nucl. Phys. of Russian Academy of Sc

    Pulse-Shape discrimination with the Counting Test Facility

    Full text link
    Pulse shape discrimination (PSD) is one of the most distinctive features of liquid scintillators. Since the introduction of the scintillation techniques in the field of particle detection, many studies have been carried out to characterize intrinsic properties of the most common liquid scintillator mixtures in this respect. Several application methods and algorithms able to achieve optimum discrimination performances have been developed. However, the vast majority of these studies have been performed on samples of small dimensions. The Counting Test Facility, prototype of the solar neutrino experiment Borexino, as a 4 ton spherical scintillation detector immersed in 1000 tons of shielding water, represents a unique opportunity to extend the small-sample PSD studies to a large-volume setup. Specifically, in this work we consider two different liquid scintillation mixtures employed in CTF, illustrating for both the PSD characterization results obtained either with the processing of the scintillation waveform through the optimum Gatti's method, or via a more conventional approach based on the charge content of the scintillation tail. The outcomes of this study, while interesting per se, are also of paramount importance in view of the expected Borexino detector performances, where PSD will be an essential tool in the framework of the background rejection strategy needed to achieve the required sensitivity to the solar neutrino signals.Comment: 39 pages, 17 figures, submitted to Nucl. Instr. Meth.

    The CUORE cryostat: an infrastructure for rare event searches at millikelvin temperatures

    Full text link
    The CUORE experiment is the world's largest bolometric experiment. The detector consists of an array of 988 TeO2 crystals, for a total mass of 742 kg. CUORE is presently taking data at the Laboratori Nazionali del Gran Sasso, Italy, searching for the neutrinoless double beta decay of 130Te. A large custom cryogen-free cryostat allows reaching and maintaining a base temperature of about 10 mK, required for the optimal operation of the detector. This apparatus has been designed in order to achieve a low noise environment, with minimal contribution to the radioactive background for the experiment. In this paper, we present an overview of the CUORE cryostat, together with a description of all its sub-systems, focusing on the solutions identified to satisfy the stringent requirements. We briefly illustrate the various phases of the cryostat commissioning and highlight the relevant steps and milestones achieved each time. Finally, we describe the successful cooldown of CUORE
    corecore