We report the present results of CUORICINO a cryogenic experiment on
neutrinoless double beta decay (DBD) of 130Te consisting of an array of 62
crystals of TeO2 with a total active mass of 40.7 kg. The array is framed
inside of a dilution refrigerator, heavily shielded against environmental
radioactivity and high-energy neutrons, and operated at a temperature of ~8 mK
in the Gran Sasso Underground Laboratory. Temperature pulses induced by
particle interacting in the crystals are recorded and measured by means of
Neutron Transmutation Doped thermistors. The gain of each bolometer is
stabilized with voltage pulses developed by a high stability pulse generator
across heater resistors put in thermal contact with the absorber.
The calibration is performed by means of two thoriated wires routinely
inserted in the set-up. No evidence for a peak indicating neutrinoless DBD of
130Te is detected and a 90% C.L. lower limit of 1.8E24 years is set for the
lifetime of this process. Taking largely into account the uncertainties in the
theoretical values of nuclear matrix elements, this implies an upper boud on
the effective mass of the electron neutrino ranging from 0.2 to 1.1 eV. This
sensitivity is similar to those of the 76Ge experiments.Comment: 4 pages, 2 figure