1,892 research outputs found

    The neglected influence of zinc oxide light-soaking on stability measurements of inverted organic solar cells

    Get PDF
    Although zinc oxide (ZnO) is one of the most commonly used materials for electron transport layers in organic solar cells (OSCs), it also comes with disadvantages such as the so-called light-soaking issues, i.e., its need for exposure to UV light to reach its full potential in OSCs. Here, the impact of ZnO light-soaking issues on stability measurements of OSCs is investigated. It is found that in the absence of UV light a reversible degradation occurs, which is independent of the used active layer material and accelerates at higher temperatures but can be undone with a short UV exposure. This reversible aging is attributed to the re-adsorption of oxygen, which for manufacturing reasons is trapped at the interface of ZnO, even in an oxygen-free environment. This oxygen can be removed with a UV pretreatment of the ZnO but at the expense of device efficiency and production that has to take place in an oxygen-free environment. This study establishes that stability measurements of ZnO-containing OSCs must be performed exclusively with a light source including a UV part since the usage of a simple white light source - as often reported in the literature - can lead to erroneous results

    Increasing Photostability of Inverted Nonfullerene Organic Solar Cells by using Fullerene Derivative Additives

    Get PDF
    Organic solar cells (OSCs) recently achieved efficiencies of over 18% and are well on their way to practical applications, but still considerable stability issues need to be overcome. One major problem emerges from the electron transport material zinc oxide (ZnO), which is mainly used in the inverted device architecture and decomposes many high-performance nonfullerene acceptors due to its photocatalytic activity. In this work, we add three different fullerene derivatives—PC71BM, ICMA, and BisPCBM—to an inverted binary PBDB-TF:IT-4F system in order to suppress the photocatalytic degradation of IT-4F on ZnO via the radical scavenging abilities of the fullerenes. We demonstrate that the addition of 5% fullerene not only increases the performance of the binary PBDB-TF:IT-4F system but also significantly improves the device lifetime under UV illumination in an inert atmosphere. While the binary devices lose 20% of their initial efficiency after only 3 h, this time is increased fivefold for the most promising ternary devices with ICMA. We attribute this improvement to a reduced photocatalytic decomposition of IT-4F in the ternary system, which results in a decreased recombination. We propose that the added fullerenes protect the IT-4F by acting as a sacrificial reagent, thereby suppressing the trap state formation. Furthermore, we show that the protective effect of the most promising fullerene ICMA is transferable to two other binary systems PBDB-TF:BTP-4F and PTB7-Th:IT-4F. Importantly, this effect can also increase the air stability of PBDB-TF:IT-4F. This work demonstrates that the addition of fullerene derivatives is a transferable and straightforward strategy to improve the stability of OSCs

    A survey of AGN and supermassive black holes in the COSMOS Survey

    Get PDF
    The Cosmic Evolution Survey (COSMOS) is an HST/ACS imaging survey of 2 square degrees centered on RA = 10:00:28.6, Dec = + 02:12:21 (J2000). While the primary goal of the survey is to study evolution of galaxy morphology and large scale structure, an extensive multi-wavelength data set allows for a sensitive survey of AGN. Spectroscopy of optical counterparts to faint X-ray and radio sources is being carried out with the Magallen (Baade) Telescope and the ESO VLT. By achieving 80 redshift completeness down to I AB = 3, the eventual yield of AGN will be 1100 over the whole field. Early results on supermassive black holes are described. The goals of the survey include a bolometric census of AGN down to moderate luminosities, the cosmic evolution and fueling history of the central engines, and a study of AGN environments on scales ranging from the host galaxy to clusters and supercluster

    The neglected influence of zinc oxide light‐soaking on stability measurements of inverted organic solar cells

    Get PDF
    Although zinc oxide (ZnO) is one of the most commonly used materials for electron transport layers in organic solar cells (OSCs), it also comes with disadvantages such as the so‐called light‐soaking issues, i.e., its need for exposure to UV light to reach its full potential in OSCs. Here, the impact of ZnO light‐soaking issues on stability measurements of OSCs is investigated. It is found that in the absence of UV light a reversible degradation occurs, which is independent of the used active layer material and accelerates at higher temperatures but can be undone with a short UV exposure. This reversible aging is attributed to the re‐adsorption of oxygen, which for manufacturing reasons is trapped at the interface of ZnO, even in an oxygen‐free environment. This oxygen can be removed with a UV pretreatment of the ZnO but at the expense of device efficiency and production that has to take place in an oxygen‐free environment. This study establishes that stability measurements of ZnO‐containing OSCs must be performed exclusively with a light source including a UV part since the usage of a simple white light source – as often reported in the literature – can lead to erroneous results

    Massive Galaxies in COSMOS: Evolution of Black hole versus bulge mass but not versus total stellar mass over the last 9 Gyrs?

    Get PDF
    We constrain the ratio of black hole (BH) mass to total stellar mass of type-1 AGN in the COSMOS survey at 1<z<2. For 10 AGN at mean redshift z~1.4 with both HST/ACS and HST/NICMOS imaging data we are able to compute total stellar mass M_(*,total), based on restframe UV-to-optical host galaxy colors which constrain mass-to-light ratios. All objects have virial BH mass-estimates available from the COSMOS Magellan/IMACS and zCOSMOS surveys. We find zero difference between the M_BH--M_(*,total)-relation at z~1.4 and the M_BH--M_(*,bulge)-relation in the local Universe. Our interpretation is: (a) If our objects were purely bulge-dominated, the M_BH--M_(*,bulge)-relation has not evolved since z~1.4. However, (b) since we have evidence for substantial disk components, the bulges of massive galaxies (logM_(*,total)=11.1+-0.25 or logM_BH~8.3+-0.2) must have grown over the last 9 Gyrs predominantly by redistribution of disk- into bulge-mass. Since all necessary stellar mass exists in the galaxy at z=1.4, no star-formation or addition of external stellar material is required, only a redistribution e.g. induced by minor and major merging or through disk instabilities. Merging, in addition to redistributing mass in the galaxy, will add both BH and stellar/bulge mass, but does not change the overall final M_BH/M_(*,bulge) ratio. Since the overall cosmic stellar and BH mass buildup trace each other tightly over time, our scenario of bulge-formation in massive galaxies is independent of any strong BH-feedback and means that the mechanism coupling BH and bulge mass until the present is very indirect.Comment: Published in ApJL; 7 pages, 2 figures; updated to accepted version (methods changed, results unchanged

    Diketo acids inhibit the cap-snatching endonuclease of several Bunyavirales

    Get PDF
    Several fatal bunyavirus infections lack specific treatment. Here, we show that diketo acids engage a panel of bunyavirus cap-snatching endonucleases, inhibit their catalytic activity and reduce viral replication of a taxonomic representative in vitro. Specifically, the non-salt form of L-742,001 and its derivatives exhibited EC50 values between 5.6 to 6.9 ÎŒM against a recombinant BUNV-mCherry virus. Structural analysis and molecular docking simulations identified traits of both the class of chemical entities and the viral target that could help the design of novel, more potent molecules for the development of pan-bunyavirus antivirals

    The zCOSMOS 10k-Bright Spectroscopic Sample

    Get PDF
    We present spectroscopic redshifts of a large sample of galaxies with I_(AB) < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s^(–1), independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed

    Energy Resolution Performance of the CMS Electromagnetic Calorimeter

    Get PDF
    The energy resolution performance of the CMS lead tungstate crystal electromagnetic calorimeter is presented. Measurements were made with an electron beam using a fully equipped supermodule of the calorimeter barrel. Results are given both for electrons incident on the centre of crystals and for electrons distributed uniformly over the calorimeter surface. The electron energy is reconstructed in matrices of 3 times 3 or 5 times 5 crystals centred on the crystal containing the maximum energy. Corrections for variations in the shower containment are applied in the case of uniform incidence. The resolution measured is consistent with the design goals
    • 

    corecore