53 research outputs found

    A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers

    Get PDF
    The azanucleosides azacitidine and decitabine are currently used for the treatment of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) in patients not only eligible for intensive chemotherapy but are also being explored in other hematologic and solid cancers. Based on their capacity to interfere with the DNA methylation machinery, these drugs are also referred to as hypomethylating agents (HMAs). As DNA methylation contributes to epigenetic regulation, azanucleosides are further considered to be among the first true "epigenetic drugs" that have reached clinical application. However, intriguing new evidence suggests that DNA hypomethylation is not the only mechanism of action for these drugs. This review summarizes the experience from more than 10 years of clinical practice with azanucleosides and discusses their molecular actions, including several not related to DNA methylation. A particular focus is placed on possible causes of primary and acquired resistances to azanucleoside treatment. We highlight current limitations for the success and durability of azanucleoside-based therapy and illustrate that a better understanding of the molecular determinants of drug response holds great potential to overcome resistance

    Prognostic value of indoleamine 2,3 dioxygenase in patients with higher‐risk myelodysplastic syndromes treated with azacytidine

    Get PDF
    Hypomethylating agents (HMAs) are widely used in patients with higher‐risk myelodysplastic syndromes (MDS) not eligible for stem cell transplantation; however, the response rate is <50%. Reliable predictors of response are still missing, and it is a major challenge to develop new treatment strategies. One current approach is the combination of azacytidine (AZA) with checkpoint inhibitors; however, the potential benefit of targeting the immunomodulator indoleamine‐2,3‐dioxygenase (IDO‐1) has not yet been evaluated. We observed moderate to strong IDO‐1 expression in 37% of patients with high‐risk MDS. IDO‐1 positivity was predictive of treatment failure and shorter overall survival. Moreover, IDO‐1 positivity correlated inversely with the number of infiltrating CD8+ T cells, and IDO‐1+ patients failed to show an increase in CD8+ T cells under AZA treatment. In vitro experiments confirmed tryptophan catabolism and depletion of CD8+ T cells in IDO‐1+ MDS, suggesting that IDO‐1 expression induces an immunosuppressive microenvironment in MDS, thereby leading to treatment failure under AZA treatment. In conclusion, IDO‐1 is expressed in more than one‐third of patients with higher‐risk MDS, and is predictive of treatment failure and shorter overall survival. Therefore, IDO‐1 is emerging as a promising predictor and therapeutic target, especially for combination therapies with HMAs or checkpoint inhibitors

    Bone marrow mesenchymal stromal cell-derived extracellular matrix displays altered glycosaminoglycan structure and impaired functionality in Myelodysplastic Syndromes

    Get PDF
    Myelodysplastic syndromes (MDS) comprise a heterogeneous group of hematologic malignancies characterized by clonal hematopoiesis, one or more cytopenias such as anemia, neutropenia, or thrombocytopenia, abnormal cellular maturation, and a high risk of progression to acute myeloid leukemia. The bone marrow microenvironment (BMME) in general and mesenchymal stromal cells (MSCs) in particular contribute to both the initiation and progression of MDS. However, little is known about the role of MSC-derived extracellular matrix (ECM) in this context. Therefore, we performed a comparative analysis of in vitro deposited MSC-derived ECM of different MDS subtypes and healthy controls. Atomic force microscopy analyses demonstrated that MDS ECM was significantly thicker and more compliant than those from healthy MSCs. Scanning electron microscopy showed a dense meshwork of fibrillar bundles connected by numerous smaller structures that span the distance between fibers in MDS ECM. Glycosaminoglycan (GAG) structures were detectable at high abundance in MDS ECM as white, sponge-like arrays on top of the fibrillar network. Quantification by Blyscan assay confirmed these observations, with higher concentrations of sulfated GAGs in MDS ECM. Fluorescent lectin staining with wheat germ agglutinin and peanut agglutinin demonstrated increased deposition of N-acetyl-glucosamine GAGs (hyaluronan (HA) and heparan sulfate) in low risk (LR) MDS ECM. Differential expression of N-acetyl-galactosamine GAGs (chondroitin sulfate, dermatan sulfate) was observed between LR- and high risk (HR)-MDS. Moreover, increased amounts of HA in the matrix of MSCs from LR-MDS patients were found to correlate with enhanced HA synthase 1 mRNA expression in these cells. Stimulation of mononuclear cells from healthy donors with low molecular weight HA resulted in an increased expression of various pro-inflammatory cytokines suggesting a contribution of the ECM to the inflammatory BMME typical of LR-MDS. CD34+ hematopoietic stem and progenitor cells (HSPCs) displayed an impaired differentiation potential after cultivation on MDS ECM and modified morphology accompanied by decreased integrin expression which mediate cell-matrix interaction. In summary, we provide evidence for structural alterations of the MSC-derived ECM in both LR- and HR-MDS. GAGs may play an important role in this remodeling processes during the malignant transformation which leads to the observed disturbance in the support of normal hematopoiesis

    FLT3 and FLT3-ITD phosphorylate and inactivate the cyclin-dependent kinase inhibitor p27Kip1 in acute myeloid leukemia

    Get PDF
    P27Kip1 (p27) can prevent cell proliferation by inactivating cyclin-dependent kinases. This function is impaired upon phosphorylation of p27 at tyrosine residue 88. We observed that FLT3 and FLT3-ITD can directly bind and selectively phosphorylate p27 on this residue. Inhibition of FLT3-ITD in cell lines strongly reduced p27 tyrosine 88 phosphorylation and resulted in increased p27 levels and cell cycle arrest. Subsequent analysis revealed the presence of tyrosine 88 phosphorylated p27 in primary patient samples. Inhibition of FLT3 kinase activity with AC220 significantly reduced p27 tyrosine 88 phosphorylation in cells isolated from FLT3 wild type expressing acute myeloid leukemia (AML) patients. In FLT3-ITD positive AML patients, p27 tyrosine 88 phosphorylation was reduced in 5 out of 9 subjects, but, surprisingly, was increased in 4 patients. This indicated that other tyrosine kinases such as Src family kinases might contribute to p27 tyrosine 88 phosphorylation in FLT3-ITD positive AML cells. In fact, incubation with the Src family kinase inhibitor dasatinib could decrease p27 tyrosine 88 phosphorylation in these patient samples, indicating that p27 phosphorylated on tyrosine 88 may be a therapeutic marker for the treatment of AML patients with tyrosine kinase inhibitors

    Secreted factors from mouse embryonic fibroblasts maintain repopulating function of single cultured hematopoietic stem cells

    Get PDF
    Hematopoietic stem cell self-renewal, proliferation, and differentiation are independently regulated by intrinsic as well as extrinsic mechanisms. We previously demonstrated that murine proliferation of hematopoietic stem cells is supported in serum-free medium supplemented with two growth factors, stem cell factor and interleukin 11. The survival of hematopoietic stem cells is additionally improved by supplementing this medium with two more growth factors, neural growth factor and collagen 1 (four growth factors) or serum-free medium conditioned by the hematopoietic stem cell-supportive stromal UG26-1B6 cells1. Here, we describe a robust and versatile alternative source of conditioned medium from mouse embryonic fibroblasts. We found that this conditioned medium supports survival and phenotypical identity of hematopoietic stem cells, as well as cell cycle entry in single cell cultures of CD34- CD48- CD150+ Lineage- SCA1+ KIT+ cells supplemented with two growth factors. Strikingly, in comparison with cultures in serum-free medium with four growth factors, conditioned medium from mouse embryonic fibroblasts increases the numbers of proliferating clones and the number of Lineage- SCA1+ KIT+ cells, both with two and four growth factors. In addition, conditioned medium from mouse embryonic fibroblasts supports self-renewal in culture of cells with short- and long-term hematopoiesis-repopulating ability in vivo. These findings identify conditioned medium from mouse embryonic fibroblasts as a robust alternative serumfree source of factors to maintain self-renewal of in vivo-repopulating hematopoetic stem cells in culture

    Clinico-genetic findings in 509 frontotemporal dementia patients

    Get PDF
    Abstract Frontotemporal dementia (FTD) is a clinically and genetically heterogeneous disorder. To which extent genetic aberrations dictate clinical presentation remains elusive. We investigated the spectrum of genetic causes and assessed the genotype-driven differences in biomarker profiles, disease severity and clinical manifestation by recruiting 509 FTD patients from different centers of the German FTLD consortium where individuals were clinically assessed including biomarker analysis. Exome sequencing as well as C9orf72 repeat analysis were performed in all patients. These genetic analyses resulted in a diagnostic yield of 18.1%. Pathogenic variants in C9orf72 (n = 47), GRN (n = 26), MAPT (n = 11), TBK1 (n = 5), FUS (n = 1), TARDBP (n = 1), and CTSF (n = 1) were identified across all clinical subtypes of FTD. TBK1-associated FTD was frequent accounting for 5.4% of solved cases. Detection of a homozygous missense variant verified CTSF as an FTD gene. ABCA7 was identified as a candidate gene for monogenic FTD. The distribution of APOE alleles did not differ significantly between FTD patients and the average population. Male sex was weakly associated with clinical manifestation of the behavioral variant of FTD. Age of onset was lowest in MAPT patients. Further, high CSF neurofilament light chain levels were found to be related to GRN-associated FTD. Our study provides large-scale retrospective clinico-genetic data such as on disease manifestation and progression of FTD. These data will be relevant for counseling patients and their families

    The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma

    Get PDF
    The complex architecture of transmembrane proteins requires quality control (QC) of folding, membrane positioning, and trafficking as prerequisites for cellular homeostasis and intercellular communication. However, it has remained unclear whether transmembrane protein-specific QC hubs exist. Here we identify cereblon (CRBN), the target of immunomodulatory drugs (IMiDs), as a co-chaperone that specifically determines chaperone activity of HSP90 toward transmembrane proteins by means of counteracting AHA1. This function is abrogated by IMiDs, which disrupt the interaction of CRBN with HSP90. Among the multiple transmembrane protein clients of CRBN-AHA1-HSP90 revealed by cell surface proteomics, we identify the amino acid transporter LAT1/CD98hc as a determinant of IMiD activity in multiple myeloma (MM) and present an Anticalin-based CD98hc radiopharmaceutical for MM radio-theranostics. These data establish the CRBN-AHA1-HSP90 axis in the biogenesis of transmembrane proteins, link IMiD activity to tumor metabolism, and nominate CD98hc and LAT1 as attractive diagnostic and therapeutic targets in MM

    Real-world experience of CPX-351 as first-line treatment for patients with acute myeloid leukemia

    Get PDF
    Abstract To investigate the efficacy and toxicities of CPX-351 outside a clinical trial, we analyzed 188 patients (median age 65 years, range 26–80) treated for therapy-related acute myeloid leukemia (t-AML, 29%) or AML with myelodysplasia-related changes (AML-MRC, 70%). Eighty-six percent received one, 14% two induction cycles, and 10% received consolidation (representing 22% of patients with CR/CRi) with CPX-351. Following induction, CR/CRi rate was 47% including 64% of patients with available information achieving measurable residual disease (MRD) negativity (<10−3) as measured by flow cytometry. After a median follow-up of 9.3 months, median overall survival (OS) was 21 months and 1-year OS rate 64%. In multivariate analysis, complex karyotype predicted lower response (p = 0.0001), while pretreatment with hypomethylating agents (p = 0.02) and adverse European LeukemiaNet 2017 genetic risk (p < 0.0001) were associated with lower OS. Allogeneic hematopoietic cell transplantation (allo-HCT) was performed in 116 patients (62%) resulting in promising outcome (median survival not reached, 1-year OS 73%), especially in MRD-negative patients (p = 0.048). With 69% of patients developing grade III/IV non-hematologic toxicity following induction and a day 30-mortality of 8% the safety profile was consistent with previous findings. These real-world data confirm CPX-351 as efficient treatment for these high-risk AML patients facilitating allo-HCT in many patients with promising outcome after transplantation

    Bridging Strategies to Allogeneic Transplant for Older AML Patients

    No full text
    Treatment options for older patients with intermediate or high-risk acute myeloid leukemia (AML) remain unsatisfactory. Allogeneic stem cell transplantation, the treatment of choice for the majority of younger AML patients, has been hampered in elderly patients by higher treatment related mortality, comorbidities and lack of a suitable donor. With the higher availability of suitable donors as well as of reduced intensity conditioning regimens, novel low intensity treatments prior to transplantation and optimized supportive care, the number of older AML patients being successfully transplanted is steadily increasing. Against this background, we review current treatment strategies for older AML patients planned for allogeneic stem cell transplantation based on clinical trial data, discussing differences between approaches with advantages and pitfalls of each. We summarize pre-treatment considerations that need to be taken into account in this highly heterogeneous older population. Finally, we offer an outlook on areas of ongoing clinical research, including novel immunotherapeutic approaches that may improve access to curative therapies for a larger number of older AML patients
    corecore