349 research outputs found

    Scanning Electron Microscope Studies on the Breakdown of Passivity of a Nickel-Chromium-Molybdenum Dental Alloy

    Get PDF
    The breakdown of passivity and localized corrosion of a Ni-20Cr-10Mo alloy was investigated. The methods employed were potentiodynamic polarization and SEM, and AES and EDX after potentiostatic polarization over a period of 20 hours in the passive and transpassive regions. The 1 ÎŒm finished as-cast specimens were polarized in aerated 0.1 M NaCl. The cyclic polarization curves revealed a critical pitting potential of 470 mv (SCE), while the protection potential was 300 mV (SCE). Using the potentiostatic polarization technique, nearly constant corrosion currents appeared, indicating that the whole surface was corroded uniformly. SEM pictures of samples, corroded at 650 mv, showed little pits under the oxide layer and a thinning down of the outer oxide layer. This lead to the opinion that the penetration as well as the adsorption mechanism determine the breakdown of passivity. EDX analysis and AES depth profiles showed an enrichment of Cr and Mo in the oxide. In contrast to oxidized samples, no second layer of Ni was found in the outer oxide region. In the transpassive region the relative amount of Cr and Mo in the oxide layer was higher than the one found in corresponding samples polarized in the passive region. The oxide thickness found was about 5 nm in the passive region (300 mV SCE) and about 250 nm in the transpassive region (650 mV SCE)

    General relativistic gravitational field of a rigidly rotating disk of dust: Solution in terms of ultraelliptic functions

    Full text link
    In a recent paper we presented analytic expressions for the axis potential, the disk metric, and the surface mass density of the global solution to Einstein's field equations describing a rigidly rotating disk of dust. Here we add the complete solution in terms of ultraelliptic functions and quadratures.Comment: 5 pages, published in 1995 [Phys. Rev. Lett. 75 (1995) 3046

    Exploring future agricultural development and biodiversity in Uganda, Rwanda and Burundi: a spatially explicit scenario-based assessment

    Get PDF
    Competition for land is increasing as a consequence of the growing demands for food and other commodities and the need to conserve biodiversity and ecosystem services. Land conversion and the intensification of current agricultural systems continues to lead to a loss of biodiversity and trade-offs among ecosystem functions. Decision-makers need to understand these trade-offs in order to better balance different demands on land and resources. There is an urgent need for spatially explicit information and analyses on the effects of different trajectories of human-induced landscape change in biodiversity and ecosystem services. We assess the potential implications of a set of plausible socio-economic and climate scenarios for agricultural production and demand and model-associated land use and land cover changes between 2005 and 2050 to assess potential impacts on biodiversity in Uganda, Rwanda and Burundi. We show that different future socio-economic scenarios are consistent in their projections of areas of high agricultural development leading to similar spatial patterns of habitat and biodiversity loss. Yet, we also show that without protected areas, biodiversity losses are higher and that expanding protected areas to include other important biodiversity areas can help reduce biodiversity losses in all three countries. These results highlight the need for effective protection and the potential benefits of expanding the protected area network while meeting agricultural production needs

    Analysis of the noise-induced bursting-spiking transition in a pancreatic beta-cell model

    Get PDF
    A stochastic model of the electrophysiological behavior of the pancreatic ÎČ cell is studied, as a paradigmatic example of a bursting biological cell embedded in a noisy environment. The analysis is focused on the distortion that a growing noise causes to the basic properties of the membrane potential signals, such as their periodic or chaotic nature, and their bursting or spiking behavior. We present effective computational tools to obtain as much information as possible from these signals, and we suggest that the methods could be applied to real time series. Finally, a universal dependence of the main characteristics of the membrane potential on the size of the considered cell cluster is presented.This work has been supported by the Spanish Ministry of Science and Technology under Project Nos. BFM2000-0967 and BFM2003-03081 by a scholarship from the Spanish Ministry of Foreign Affaires (2001), and by Universidad Rey Juan Carlos under Project Nos. PGRAL-2001-02, PIGE-02-04, and GCO-2003–16. J.A. acknowledges support from the Danish Natural Science Foundation.Peer reviewe

    Investigation into Photoconductivity in Single CNF/TiO2-Dye Core–Shell Nanowire Devices

    Get PDF
    A vertically aligned carbon nanofiber array coated with anatase TiO2 (CNF/TiO2) is an attractive possible replacement for the sintered TiO2 nanoparticle network in the original dye-sensitized solar cell (DSSC) design due to the potential for improved charge transport and reduced charge recombination. Although the reported efficiency of 1.1% in these modified DSSC’s is encouraging, the limiting factors must be identified before a higher efficiency can be obtained. This work employs a single nanowire approach to investigate the charge transport in individual CNF/TiO2 core–shell nanowires with adsorbed N719 dye molecules in dark and under illumination. The results shed light on the role of charge traps and dye adsorption on the (photo) conductivity of nanocrystalline TiO2 CNF’s as related to dye-sensitized solar cell performance

    A first-in-human clinical study of a new SP-B and SP-C enriched synthetic surfactant (CHF5633) in preterm babies with respiratory distress syndrome

    Get PDF
    Objective CHF5633 (Chiesi Farmaceutici S.p.A., Parma, Italy) is the first fully synthetic surfactant enriched by peptide analogues of two human surfactant proteins. We planned to assess safety and tolerability of CHF5633 and explore preliminary efficacy. Design Multicentre cohort study. Patients Forty infants from 27+0 to 33+6 weeks gestation with respiratory distress syndrome requiring fraction of inspired oxygen (FiO2) ≄0.35 were treated with a single dose of CHF5633 within 48 hours after birth. The first 20 received 100 mg/kg and the second 20 received 200 mg/kg. Outcome measures Adverse events (AEs) and adverse drug reactions (ADRs) were monitored with complications of prematurity considered AEs if occurring after dosing. Systemic absorption and immunogenicity were assessed. Efficacy was assessed by change in FiO2 after dosing and need for poractant-alfa rescue. Results Rapid and sustained improvements in FiO2 were observed in 39 (98%) infants. One responded neither to CHF5633 nor two poractant-alfa doses. A total of 79 AEs were experienced by 19 infants in the 100 mg/kg cohort and 53 AEs by 20 infants in the 200 mg/kg cohort. Most AEs were expected complications of prematurity. Two unrelated serious AEs occurred in the second cohort. One infant died of necrotising enterocolitis and another developed viral bronchiolitis after discharge. The single ADR was an episode of transient endotracheal tube obstruction following a 200 mg/kg dose. Neither systemic absorption, nor antibody development to either peptide was detected. Conclusions Both CHF5633 doses were well tolerated and showed promising clinical efficacy profile. These encouraging data provide a basis for ongoing randomised controlled trials

    Odorant binding proteins : a biotechnological tool for odour control

    Get PDF
    The application of an odorant binding protein for odour control and fragrance delayed release from a textile surface was first explored in this work. Pig OBP-1 gene was cloned and expressed in Escherichia coli , and the purified protein was biochemically characterized. The IC50 values(concentrations of competitor that caused a decay of fluorescence to half-maximal intensity) were determined for four distinct fragrances, namely, citronellol, benzyl benzoate,citronellyl valerate and ethyl valerate. The results showed a strong binding of citronellyl valerate,citronellol and benzyl benzoate to the recombinant protein, while ethyl valerate displayed weaker binding. Cationized cotton substrates were coated with porcine odorant binding protein and tested for their capacity to retain citronellol and to mask the smell of cigarette smoke. The immobilized protein delayed the release of citronellol when compared to the untreated cotton. According to a blind evaluation of 30 assessors, the smell of cigarette smoke, trapped onto the fabrics’ surface, was successfully attenuated by porcine odorant binding protein (more than 60 % identified the weakest smell intensity after protein exposure compared to ÎČ-cyclodextrin-treated and untreated cotton fabrics). This work demonstrated that porcine odorant binding protein can be an efficient solution to prevent and/orremove unpleasant odours trapped on the large surface of textiles. Its intrinsic properties make odorant binding proteins excellent candidates for controlled release systems which constitute a new application for this class of proteins.This work was co-funded by the European Social Fund through the management authority POPH and FCT. The authors Carla Silva and Teresa Matama would like to acknowledge their post-doctoral fellowships: SFRH/BPD/46515/2008 and SFRH/BPD/47555/2008, respectively

    Frame dragging and bending of Light in Kerr and Kerr-(anti) de Sitter spacetimes

    Full text link
    The equations of general relativity in the form of timelike and null geodesics that describe motion of test particles and photons in Kerr spacetime are solved exactly including the contribution from the cosmological constant. We then perform a systematic application of the exact solutions obtained to the following cases. The exact solutions derived for null, spherical, polar and non-polar orbits are applied for the calculation of frame dragging (Lense-Thirring effect) for the orbit of a photon around the galactic centre, assuming that the latter is a Kerr black hole for various values of the Kerr parameter including those supported by recent observations. Unbound null polar orbits are investigated, and an analytical expression for the deviation angle of a polar photon orbit from the gravitational Kerr field is derived. In addition, we present the exact solution for timelike and null equatorial orbits. In the former case, we derive an analytical expression for the precession of the point of closest approach (perihelion, periastron) for the orbit of a test particle around a rotating mass whose surrounding curved spacetime geometry is described by the Kerr field. In the latter case, we calculate an exact expression for the deflection angle for a light ray in the gravitational field of a rotating mass (the Kerr field). We apply this calculation for the bending of light from the gravitational field of the galactic centre for various values of the Kerr parameter and the impact factor.Comment: LaTeX file, 45 pages 1 figure, typos fixed, v3 published in Classical and Quantum Gravity 22 (2005) 4391-442

    Minimal state models for ionic channels involved in glucagon secretion

    Get PDF
    Pancreatic alpha cells synthesize and release glucagon. This hormone along with insulin, preserves blood glucose levels within a physiological range. During low glucose levels, alpha cells exhibit electrical activity related to glucagon secretion. In this paper, we introduce minimal state models for those ionic channels involved in this electrical activity in mice alpha cells. For estimation of model parameters, we use Monte Carlo algorithms to fit steadystate channel currents. Then, we simulate dynamic ionic currents following experimental protocols. Our aims are 1) To understand the individual ionic channel functioning and modulation that could affect glucagon secretion, and 2) To simulate ionic currents actually measured in voltage-clamp alpha-cell experiments in mice. Our estimations indicate that alpha cells are highly permeable to sodium and potassium which mainly manage action potentials. We have also found that our estimated N-type calcium channel population and density in alpha cells is in good agreement to those reported for L-type calcium channels in beta cells. This finding is strongly relevant since both, L-type and N-type calcium channels, play a main role in insulin and glucagon secretion, respectively

    Towards Our Common Digital Future. Flagship Report.

    Get PDF
    In the report “Towards Our Common Digital Future”, the WBGU makes it clear that sustainability strategies and concepts need to be fundamentally further developed in the age of digitalization. Only if digital change and the Transformation towards Sustainability are synchronized can we succeed in advancing climate and Earth-system protection and in making social progress in human development. Without formative political action, digital change will further accelerate resource and energy consumption, and exacerbate damage to the environment and the climate. It is therefore an urgent political task to create the conditions needed to place digitalization at the service of sustainable development
    • 

    corecore