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ABSTRACT. Pancreatic alpha cells synthesize and release glucagon. This hor-
mone along with insulin, preserves blood glucose levels within a physiological
range. During low glucose levels, alpha cells exhibit electrical activity related
to glucagon secretion. In this paper, we introduce minimal state models for
those ionic channels involved in this electrical activity in mice alpha cells. For
estimation of model parameters, we use Monte Carlo algorithms to fit steady-
state channel currents. Then, we simulate dynamic ionic currents following
experimental protocols. Our aims are 1) To understand the individual ionic
channel functioning and modulation that could affect glucagon secretion, and
2) To simulate ionic currents actually measured in voltage-clamp alpha-cell
experiments in mice. Our estimations indicate that alpha cells are highly per-
meable to sodium and potassium which mainly manage action potentials. We
have also found that our estimated N-type calcium channel population and den-
sity in alpha cells is in good agreement to those reported for L-type calcium
channels in beta cells. This finding is strongly relevant since both, L-type and
N-type calcium channels, play a main role in insulin and glucagon secretion,
respectively.

1. Introduction. The pancreas is the organ in vertebrates that produces glucagon,
insulin and somatostatin hormones through its exocytotic cells a, 8 and §, respec-
tively. These cells are grouped in areas called Islets of Langerhans. Each islet is
made up of 1000 to 3000 cells, of which alpha cells represent 33 to 46% in humans,
and 15 to 20% in mice [5]. Thus, a mouse islet only has between 150 and 600 alpha
cells. Because of the scarcity of «-cells in the mouse islet and the difficulties in iden-
tifying them according to physiological patterns, the information about this cell type
is limited in comparison to the S-cell. Alpha cells synthesise and release glucagon.
This hormone along with insulin, preserves blood glucose levels within a physiolog-
ical range. Glucagon is secreted during hypoglycemia, and in turn, it induces the
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mobilisation of hepatic glucose into the bloodstream. In diabetic individuals, the
a-cell function may be impaired, which can aggravate the hyperglycaemic state of
these patients. Because of its vital role in glucose regulation, understanding alpha
cell physiology is a key topic in the treatment of diabetes [24].

From a physiological point of view, the electrical activity exhibited by alpha
cells is initiated when they are exposed to low glucose levels. In this situation, the
alpha cells generate action potentials (APs) which are related to glucagon secretion.
These APs are supposed to be triggered by a low ATP/ADP ratio, because of the
absence of glucose. In these conditions, the K o7 p channels are open, producing an
ionic current that allows a level of membrane potential where APs are generated.
This electrical activity chain is possible thanks to the Ca? and Na™ channels that
fire the depolarisation stage of the APs. Then, cell depolarisation finally activates
the KT channels in order to repolarise the cell [24, 14]. Some experimental studies
vary the glucose level to explore regulating factors of glucagon secretion [34]. Other
experiments focus on the electrical activity involved in glucagon secretion [13, 2,
12]; a common protocol in these works is to stimulate the cell with controlled
depolarising pulses from a fixed cell voltage, and then measure the produced ionic
currents (voltage-clamp technique).

In this paper, we define minimal state models and estimate their parameters
for each ionic channel, towards simulating ionic currents associated to glucagon
secretion in alpha cells. Currently, we are only considering the relevant currents
measured in mice, which are common animal models for alpha-cell experimentation.
We present a state modeling approach to simulate the dynamics of ionic currents
commonly measured in voltage-clamp experiments on alpha cells. Among other
findings, we have noticed that our N-type calcium channel density in alpha cells
is in the order of the L-type channel density reported for beta cells [3], which
is interesting since both channels are involved in glucagon and insulin secretion,
respectively.

2. Physiological basis. Asin many cell types, glucagon release is regulated by in-
tracellular Ca?* increases which in turn involve voltage-gated Ca?* channels. Even
though Ca®t plays a main role in alpha-cell exocytosis, other voltage-gated ionic
channels are also involved in the electrical activity leading to glucagon secretion,
including Na* and Kt channels [14]. The main alpha-cell electrical currents associ-
ated to glucagon secretion are the T- and N-type calcium currents (Icq,and Icay ),
the sodium current (Iy,) and the DR~ and A- type potassium currents (Ix,, ,and
Ix,) [24]. These are all voltage-dependent currents due to the activation of spe-
cific ionic channels. Although there are other currents found in «-cells, such as
the L-type calcium current and the ATP-regulated potassium current, they are not
being included as we are focusing on the main voltage-dependent electrical currents
directly involved in glucagon release. The L- calcium current is voltage-dependent
and contributes to calcium influx, but it hardly participates in glucagon exocytosis
in response to glucose [14]. The ATP-dependent current, on the other hand, is not
voltage-dependent since it is controlled by the glucose metabolism. In this paper,
we will consider that glucose remains constant at a physiological value (5 mM),
which is a common condition in depolarisation-evoked experiments.
Voltage-dependent electrical currents that control the sequence of events leading
to glucagon secretion, that is Ica,, Icay, INa, Ik ,and Ik, , exhibit some common
kinetic properties that make them suitable for modeling. First, the activation of
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these currents increases as the cell membrane changes its potential difference be-
tween the inside and the outside of the cell, i.e. as the cell becomes depolarised.
Second, the currents deactivate when depolarisation disappears. Third, a strong or
a sustained depolarisation induces current inactivation (in some of these currents)
i.e. the current diminishes even when depolarisation continues. However, each cur-
rent exhibits its own dynamic behaviour. Hence, these properties serve as a basis for
state models since these channels produce the whole-cell currents measured during
electrophysiological experiments on alpha cells.

3. Minimal models. There are two common approaches to model channel gating
that produce ionic currents: the Hodgkin-Huxley paradigm and the Markov state
modeling [8]. The first is widespread because of its capability to be managed and
its ability to model macroscopic phenomenon so, there are different parameter esti-
mation methods and software based on it [40, 39]. However, this approach is unable
to model single-channel behaviour since it is based on continuous and deterministic
principles [6, 31, 15]. Markov state models are an adequate methodology to combine
experimental information and mathematical modeling of single-channel behaviour
[23] since each state is trying to resemble the conformational changes suffered by the
channel, in order to reproduce whole-cell measurements. In this paper we develop
Markov state models for channels towards: 1) Understanding individual alpha-cell
ionic channel functioning and modulation that could affect glucagon secretion, and
2) Simulating ionic currents actually measured in voltage-clamp alpha-cell experi-
ments. These channel models are suitable to be incorporated in microscopic schemes
capable to simulate high-resolution temporal and spatial events related to glucagon
exocytosis, as done in other cell types [10, 37].

Based on the idea that transition rates could be interpreted as transition prob-
abilities per time unit, we propose one state model for each ionic channel and
associate each transition rate between states (¢;;) to a channel property (Figure
1). A model contains just one Open (and active) state and one or more Closed
and Inactive states; the Open (active) is the conducting state. Specifically, we un-
derstand Activation as those transitions going to the Open state, and Deactivation
as those transitions going to Closed states. Activation and deactivation are both
functions of membrane voltage in a symmetrical manner. Since some channels also
present Inactivation (no response under constant stimulation), we understand it as
transitions to Inactive states. There are two types of channel inactivation: due to
extreme depolarisation (voltage-dependent inactivation), and due to the accumu-
lation of Ca®* near the channel mouth (calcium-dependent inactivation) [41]. Our
models have both cases and the dependence is included in the definition of the tran-
sition rate to Inactive states. All transition rates follow the main idea of the Markov
models, i.e. transitions only depend on the present state and are time-independent
[6, 25]. The minimal models proposed here are constrained to fit an experimental
current-to-voltage (IV) function and to adequately reproduce dynamic currents; as
possible, we also take into account other kinetic data such as steady-state inactiva-
tion curves or time constants. Our models are based on previously reported models
where possible, but are simplified in order to have the minimum number of states
to reproduce current dynamics and to uncover intrinsic channel properties.

Following the idea that activation/deactivation are symmetrical exponential func-
tions of membrane potential difference [§], we define opening and closing rates as
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FIGURE 1. State models for all channels. (a) Two-state model for
potassium channels associated to Ik, ,. €9 and e; represent Open
and Closed channel states, respectively. (b) Three-state model for
both types of calcium channels (Icq,and Icqy). €o,e1,e2 cor-
respond to Open, Closed and Inactive states, respectively. (c)
Four-state model for sodium and potassium channels associated to
Ingand Ix , currents. eg, eq, €2, es correspond to Open but Inactive,
Closed and Inactive, Open, and Closed states, respectively. The
values for all of the transition rates are given in Table 2. The sys-
tem of differential equations corresponding to each model is shown
in the right.

exponential functions. Inactivation rates are defined as sigmoidal functions of mem-
brane potential difference, considering that experimental data commonly shows that
currents inactivate in this manner. For the N-type Ca?*t channels, we also added
calcium-dependent inactivation since these channels exhibit this particularity, as
discussed in [16]. Finally, all other transition rates are fitted as time constants, as
is the case in many state models. All models include one Open and some Closed
and Inactive states, depending on the specific channel characteristics, as depicted
in figure 1. Although there are other methods to estimate current kinetic properties
[33] using the Hodgkin-Huxley approach, we favour the voltage-clamp experimental
basis to estimate model parameters.

4. Parameter estimation. Parameter estimation for each model was done using
a Monte Carlo algorithm which looks for a parameter set that fits an experimen-
tal IV curve with minimal error. If there is information about an experimental
IV relationship in alpha cells, we have used it to calibrate our model. However,
since some currents have not yet been isolated or measured in alpha cells, we have
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used data available from experiments on other cell types considering that channels
preserve their single-channel properties. Although we are not following a formal
methodology to fit kinetic parameters since there is no available numerical data for
single or total currents, our algorithm considers the guidelines discussed in [22]: 1)
To fit the model several times while randomly changing the parameters; 2)To fix
some parameters to improve the identifiability of the model; 3)To make the number
of trials large enough (proportional to parameter space) to improve confidence, and
4)To use a defined stimulation (like a depolarising pulse). Our main algorithm is
shown in Figure 2: First, it determines the number of trials as a function of the
number of parameters; then, it generates random parameter combinations for the
parameter space (routine randPar(numPar)); after, it calculates the peak current
at specific voltages by solving channel equations for each parameter set (routine
channel(V,p)); finally, it computes the chi square deviation of the simulated peak
currents to experimental ones, and find that set with minimal deviation (routine
minChiDev()).

Routine channel(V,p) solves the system of differential equations representing each
channel model (Figure 1), at the steady state. Specifically, it obtains the peak
current for each model at the specific voltage V with the parameter set p. For
example, for the two-state model (Figure 1(a)), the equations are

P! = qoPe, — qo1Pe,, ()
P = qu1Pey — qr0Pe,,
where P., represents the probability that a channel is in state e;. An extra equation

refers to probability conservation i.e. ) P. = 1. The solution to (Eq.1) for P,
and P, at the steady-state (i.e. where each P, = 0), would be

— 410
PeU qo1+q10’ (2)
P = 499
€1 qo1+q10’

which has two rates to be fitted, gi19 and go1. For this two-state model, these transi-
tion rates refer to the activation and deactivation of the channel, and as mentioned
above, they are exponential functions of the membrane potential. Indeed, there
are two parameters per exponential to be fitted (amplitude and time constant) so,
for the two-state model the parameter space is made of five parameters in total:
four for the rates, and one for the channel population. It is important to mention
that the number of channels is always considered to be a free parameter ranging
between 100 and 10000; these limits are based on density values for beta and chro-
maffin cells [21, 17] (see Section 6 for a broader discussion about channel densities).
Routine randPar(numPar) generates the random values for all parameters for each
trial, considering these limits.

The solution for the Open state probability (P, in Eq.(2)) allows estimation of
the number of open channels. The total current is calculated multiplying the unitary
current by the open channel population, as described for L- calcium channels in [11].
The unitary current is specific to each channel, and it depends on the membrane
voltage and the single-channel conductance; these values are given in Table 1 for all
channels. The fixed values used to estimate the free parameters and to simulate the
electrical currents, are detailed in Table 1. The estimated values for the transition
rates for each channel model, are given in Table 2. The physiological basis for each
channel model and its associated ionic current are detailed in section 5.
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INPUT (numPar)
OUTPUT (best)
begin N = 1,000, 000 * numPar
for j:=1to N do
p(j) = randPar(numPar);
for V. := Vju to V},; do
I(j) = channel(V, p(j));
end
end
for j:=1to N do
best = minChiDev(I(j), Iexp));
end
end

FIGURE 2. Algorithm used to find the best parameter set that fits
experimental peak currents for each channel model.

TABLE 1. Fixed values for channel models

Car Can Na Ka | Kpr
Unitary conductance (pS) 8.4,4.2.27 13 12,41 12 30
Activation voltage, Vet (mV) -60 -20 -30 -40 -20
Inactivation voltage, Vi, (mV) -45 -31 -42 -68 —

14.2pS if V' > —60, 8.4pS if V< —60, 2pS if V' > 0. See also section 5.4.
112pS if V' < 10, otherwise 4pS. See also section 5.3.

4.1. Dynamic behaviour vs. steady-state estimation. Using an optimal set
of parameters for each model, we simulate the dynamic behaviour of a current by
solving the differential equations over time for each multi-state model. We try, in
this manner, to reproduce the measured currents following experimental protocols in
alpha cells. These protocols usually consist of fixing a resting condition for the cell
(at a very negative membrane potential), and then stimulating it by depolarising the
cell membrane. For our simulations, all channels are assumed to be closed at resting
(initial) conditions, and they increment their opening probability as depolarisation
increases. We again compute the total current as the product of the number of
channels in the Open state by the unitary current, per each time step. The algorithm
uses an adaptive time-step ordinary differential equation solver for stiff problems
(ode15s) implemented in Matlab (http://www.mathworks.com).

It is important to mention that there is a strong compromise between fitting
an IV curve, and correctly reproducing the current dynamic behaviour. On the
one hand, the IV curve is built from peak currents (as in experimental reports)
which corresponds to the maximal conductance of a channel population, i.e. the
maximum number of channels that could be open due to the electrostatic force of
the applied membrane potential difference. This is calculated on the basis that
Open probability rapidly increases for membrane depolarisations, so peak current
value is mainly due to steady-state Open probability. On the other hand, the
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TABLE 2. Estimated values for channel models. All rates in ms™!.

Sodium A-type potassium

NC | 2554 1631
qo1 | 0.44exp(—0.06V;) | 6.83 exp(—0.02V;;,)
q10 | 11.39exp(0.05V;;) | 30.77 exp(0.03V;p,)*

qo2 | 0.81%* 8.5107°
q20 906/E0 OOl/.EO>k
q13 | 0.004* 0.008

gs1 | 3.69/Eq* 0.12/ Eg*

g23 | 0.8exp(—0.06V;,) | 0.8exp(—0.02V};)
gs2 | 20.58 exp(0.05V;;,) | 3.6 exp(0.03V;;)*

T-type calcium N-type calcium DR-type potassium

NC | 694 202 251

qo1 | 0.03exp(—0.05V;s) | 0.22 exp(—0.05V;3,) | 2.6 1075 exp(—0.2V}y,)
g10 | 13.06 exp(0.03Vin) | 0.67 exp(0.04Vin) | 0.7 exp(0.03Vi)

qo2 | 0.001 - -

q20 894/E1 - -
q12 894/E1 69(ACG/E1)* -
g21 | 0.001 0.008* -

NC=Number of channels, V;;, =V — Voo, Vi =V — V.
ACa = [E4, By =1+ exp(—0.01V}), Er = 1+ exp(—0.1V}).
*Values modified to improve dynamic behaviour. See section 4.1 for details.

dynamic behaviour of the current exhibits the rapid and transitory changes of the
channel, i.e. the transitions to/from one state to another, including the Open
state. This is attributable not only to membrane potential variations but also to
stochastic transitions over time. Using this approach, the set of parameters found for
peak currents is a static approximation of this behaviour, and does not necessarily
reproduce current dynamics although it provides a good set of starting values to
restrict the model and the channel populations.

To overcome this limitation and bearing in mind that our main goal is to study
the real electrical activity observed in alpha cells, we have taken the channel model
parameter set obtained while fitting the IV curve, as described above, as a start-
ing set of parameters to simulate the corresponding current dynamics. After the
simulations, we observed that some dynamic properties, mainly deactivation and
inactivation, were underestimated. We tested different options in order to simulate
experimental currents. The most suitable was to fix deactivation parameters and to
increase inactivation amplitudes. Then we checked that the new IV curve was not
far off the expected values, considering the reported experimental error bars. This
method has been applied to the channel models for Ing, Ix,and Ic,,. Figure 3
shows an example of this methodology for Iy,, where comparisons between the IV
curves, and the underestimated vs. modified currents are demonstrated. The final
IV curves obtained for all channel models using parameters given in Table 2, are
shown in Figure 4. Modified parameters are marked in this table with an asterisk.
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FicUure 3. Example of the limitations of static parameter estima-
tions to adequately reproduce dynamic behaviour. (a) Comparison
of sodium currents induced by two depolarisations: strong (0 mV,
large currents) and weak (-40 mV, small currents). Currents were
simulated using: 1)The static parameter set obtained by fitting the
IV curve (stars), and 2)The modified set (dots). As observed, pa-
rameter modifications improve dynamic simulations; in this case,
new parameter values allow fast sodium current inactivation as
found in alpha-cell experiments [2]. (b) Comparison of IV curves:
experimental read from [2] (triangles, error bars and line), static
best-fit (stars) and modified (dots). Notice that parameter modi-
fications do not significantly affect the IV curve fitting since new
values still fall inside experimental error bars.

5. Simulated currents from channel models. Following we discuss the avail-
able experimental data for each ionic channel and current, and how this information
has been used to define a particular channel model. Once a channel model has a
fixed set of parameters, we test the performance of the model in two ways: simu-
lating the IV curve and the ionic current over time.

5.1. A-type K+ channels. We have considered two voltage-dependent potassium
currents in this work: the Ix,,,and the Ix,. These currents are named “outward
currents” since channels allow K to go out of the cell when they are open, in con-
trast to calcium and sodium currents which are named “inward currents”. Iy ,is
due to Ky 4.3 channels, a voltage-gated potassium channel type which is present
in alpha cells, neurons and myocytes. In all these cell types, I, plays a very im-
portant role since it regulates membrane potential and it initiates repolarisation
after action potentials [1, 24]. Some sophisticated models simulate Ky-4.3 channel
behaviour in other cell types (not alpha cells) (see for example [38]). In all of these
models there are several Closed states, one Open state and several Inactive states,
including Open-Inactive and Closed-Inactive states. Because of its kinetics, it re-
sembles voltage-gated sodium currents: activates at negative membrane potentials,
presents a sustained steady-state current and shows voltage-dependent rapid inac-
tivation. In accordance, we propose a four-state minimal model for I, (see figure
3).
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FIGURE 4. Simulated current-to-voltage (IV) curves for all channel
models, using the parameter values given in Tables 1 and 2.

In alpha cells, Ik ,activates above -50 to -40 mV and exponentially increases
with depolarisation. It exhibits voltage-dependent inactivation with half-maximum
point at -68 mV [12]. In other cell types (not «a-cells) unitary conductance of Ky 4.3
channels has been established between 12 to 19 pS, for asymmetrical internal and
external KT concentrations [1], so we assume a value of 12 pS for our simulations
since alpha cells are commonly exposed to asymmetrical K quantities. In Figure
5(a) we show the simulated Ik , currents obtained for the activation and deactivation
voltages proposed by [12], and with the parameters given in Table 2.

5.2. DR-type KT channels. [k, .is produced by Ky 2.1 channels which are potas-
sium channels managed by voltage; these channels are found both in alpha and beta
cells [14]. In beta cells, the activation threshold has been found at -20 mV and its
IV curve shows that current grows as depolarisation increases [32]. This current
does not exhibit any inactivation so we propose a minimal two-state (Open-Close)
model, as shown in Figure 3. The unitary conductance of Ky 2.1 channels has been
estimated in 30.1+8.0 pS for neural stem cells [30]. Figure 5(b) shows the simu-
lated Ik, ,currents produced with the two-state model and the parameters given
in Tables 1 and 2.

5.3. Na' channels. Na™ channels are completely voltage driven, and they have
been modelled with many Closed and Inactive states in addition to one Open state,
such that the channel may inactivate from the Open or the Closed states [35]. Our
minimal model then includes four states: one Closed, one Open and two Inactive
states, as shown in Figure 1. Sodium channels activate and inactivate as a function
of membrane potential with a threshold voltage in the range of -30 to -20 mV
[12, 2, 36]. Single channel properties of these channels have not been estimated in
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a-cells. In Purkinje cells, a unitary conductance of 12 pS using 140 mM of external
sodium concentration, as well as a channel population of 167 channels per square
micron, have been estimated [28]. In squid axon, unitary conductance was estimated
as 14 pS, with a channel population of 180 per square micron [35]. In alpha cells, an
activation voltage of -30 mV has been reported as well as a half-maximal inactivation
voltage of -42 mV [2]. This work also reports that approximately 200 pA are
obtained for a depolarisation of -70 to 0 mV, although a much larger current (about
-545 pA) has been reported in other work [12]. Over this basis, we take a unitary
conductance of 12pS for voltages less than 10 mV, and 4 pS for greater voltages.
Activation and inactivation voltages are taken from [2]. Estimated parameters are
given in Table 2. In Figure 5(c) we show simulated In,currents with these values
taking into account that the model should reproduce the fast activation-deactivation
kinetics in a time scale below 5 ms, as observed in alpha-cell experiments [2, 12].

5.4. T-type Ca?' channels. Two types of Ca?t channels are considered: the T-
and the N-. The T-type channels have been modelled as having one Open and
many Inactive and Closed states, with possible transitions from/to Inactive to/from
Open and Closed states [27]. So, a model should include Closed, Open and Inactive
states, and should take into account that the channel may inactivate from the Open
and the Closed states. Since these channels exhibit Open-state and Closed-state
inactivation, and considering that both inactive states reach a fast equilibrium [27],
we are proposing a minimal 3-state model (Figure 1b) for which transitions to the
Inactive state from the Open or the Closed states are similar.

There are two different experimental observations for T- currents in alpha cells
concerning activation voltage: -40 mV [12, 18, 19] and -60 mV [18, 19]. Considering
these experimental works and in order to define the parameters of our model, we
are assuming that T-type calcium channels activate above -60 mV (in agreement
with the proposed role of pacemakers for T- channels [24, 41]), and that the peak
current (~27 pA) is reached at -20 mV . We are taking the unitary conductances
reported for neurons: 4.2 pS for voltages above -60 mV (broader range), 8.4 pS
below -60 mV, and 2 pS for positive voltages to obtain small currents [4].

It is well worth noticing that modeling inactivation for T- channels is not easy
since inactivation and recovery could bypass the Open state [27]. In alpha cells, the
Ica,is transient, fast activated and seems to be rapidly inactivated in a voltage-
dependent manner [19]. Moreover, T- currents exhibit an overcrossing behaviour
over depolarisation [4], so peak currents do not follow the hierarchy of steady-state
currents. Thus, to estimate parameters for the T- channel model we used a routine
channel that calculates dynamic solutions instead of steady-state values, considering
a half maximal inactivation at -45mV [12]. Deactivation has to be fixed to achieve
a transient behaviour in the first few milliseconds. Figure 5(d) shows the resultant
Icqcurrents obtained with the parameters shown in Table 2.

5.5. N-type Ca’t channels. N-type calcium channels do not exhibit transitions
from the Open to the Inactive state, and they exhibit some calcium inactivation
[16]. Hence, we propose a minimal model with Open, Closed and Inactive states
with possible transitions only from the Open to the Closed and from the Inactive
to the Closed, and viceversa, i.e. transitions qgo and go0 are zero. An important de-
pendence included in the inactivation rate is ACa = Ca,/Ca;, which estimates the
increase in the internal calcium concentration ([Ca®*]; ) compared to the external
concentration ([Ca®*],). In this calculation we are assuming that [Ca?T], remains
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constant at 2.5mM, which is reasonable since the external medium is four orders of
magnitude greater than the internal concentration (Basal [Ca?T]; ~ 0.1uM), and
that [Ca®t];is varying each time step. This is done assuming local diffusion along
100 nm from the cell membrane without buffering. We have made some tests with
buffered diffusion and the results have shown that inactivation only varies by a
constant factor. So, it is valid to use our approximation to estimate an upper limit
for calcium-dependent inactivation.

Icayactivates between -40 and -20 mV [24, 16]. Single-channel data has been
measured in neurons (where unitary conductance is between 13 to 15 pS [16]) and
in embryonic kidney cell lines (where unitary conductance is 12 pS [9]). In alpha
cells, the N- current represents about one third of the total calcium current (the rest
is L- and T- current), and it has been estimated in ~50 pA when the cell becomes
depolarised from -70 to +10 mV [20]. In this paper, the activation and inactivation
voltage have been estimated in -20 mV and -31 mV, respectively, so we take them
as fixed values for the model, as well as 13 pS of unitary conductance. Simulated
Icqycurrents, obtained with the parameters given in Table 2, are shown in Figure
5(e).

oV

omv

oY

current (pA)

Sodium

20 30 a0 50
(] 50 150 200
Time (ms)

100
“Time (ms)

2 3
Time (ms)

(c)INa (d)Icar (e)lcay

FIGURE 5. Simulated dynamic currents following the experimen-
tal protocols reported in the references. Notice differences in time
scales. (a) A-type potassium currents for -30, -20 and -10 mV. The
arrow over the largest current indicates the value of our time con-
stant (7 = 16ms) which is in agreement with experimental findings
[12]. (b) DR-type potassium currents for -20 to +60 mV [32]. (c)
Sodium currents for -20, -10 and 0 mV [2]. (d) T-type calcium
currents obtained for -40, -20 and 0 mV [19]. Notice the currents
overcrossing, as observed in experiments [4]. (e) N-type calcium
currents for -10, 0 and 10 mV [20].
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TABLE 3. Estimated conductances and densities in alpha cells

C(LT CaN Na KA KDR
Estimated number of channels 694 202 2554 1631 251
Single-channel conductance (pS) 4.2 13 12 12 30
Max. whole-cell conductance (nS) 2.9 2.6 30.6 19.5 7.5
Densityt (channels per pm?) 2.2 0.6 8.1 5.2 0.8

tConsidering a spherical alpha cell, radius=5 um

6. Discussion. The ionic currents simulated in this paper are based on minimal
state models for those ionic channels related to glucagon secretion in pancreatic
alpha cells [24]. The state model approach for channel kinetics could highlight
information about the main independent variables controlling channel gating [25].
This is particularly interesting in relation to alpha cells, as it could explain how
electrical activity is related to glucagon release, and how channel functioning could
affect glucose regulation. In agreement with the experimental observations we have
considered that channel activation and deactivation are functions of the membrane
voltage. Moreover, we have fixed deactivation parameters for fast changing cur-
rents (Icays Icars INa, and Ik, ), to efficiently estimate model parameters. These
constraints helped to improve model identifiability [22]. For channel inactivation,
we have assumed that channels inactivate in a sigmoidal manner, considering the
half-inactivation voltage values reported in alpha cell experiments. For N-type cal-
cium channels, we also found it necessary to include a dependence on external and
internal calcium concentrations to correctly simulate inactivation. This fact links
N- calcium current to a main role in calcium influx and calcium homeostasis. This
is interesting since this influx may trigger glucagon release, as discussed in [24, 14].

Another topic emerging from our analysis are whole-cell conductances and chan-
nel populations in alpha cells. Whole-cell conductances are estimated as the max-
imal number of open channels multiplied by the unitary conductance. Although
the unitary conductance is an intrinsic channel property, the maximal conductance
depends on the cell type since it is a function of total channel population and open-
ing probability. Based on our estimations, maximal whole-cell conductances for an
alpha cell seem to be graded as follows: gng >~ gx > gca, Where each ion conduc-
tance g, is calculated as the product of the estimated channel population and the
unitary conductance, and gcg = gcar + 9oay a0d gx = gr 4 + 9K, (see Table 3).
Our whole-cell conductance values highly agree with those used in a modelling work
for alpha cells based on the Hodgkin-Huxley approach [7]. Our channel densities
are also in the same magnitude order than values found in chromaffin and beta
cells and used by some modelling works [17, 21]. We emphasize that our estimated
conductances indicate that alpha cells are highly permeable to sodium and potas-
sium which mainly manage action potentials, depolarising and repolarising the cell
respectively [24, 14].

Channel densities, as well as single-channel currents in alpha cells, are still not
known. This is probably because these cells are scarce and it is difficult to isolate
them [24]. To make a comparison, it has been reported that mouse pancreatic beta
cells contain less than 500 L-type calcium channels which corresponds to a density
of 0.9 per square micron [3]. It is well worth noticing that our estimated channel
population for N-type calcium channels in alpha cells is in the same order, since we
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have ~ 200, which would correspond to a density of 0.6 (see Table 3). This finding
is strongly relevant since both, L-type and N-type calcium channels, play a main
role in insulin and glucagon secretion, respectively [3, 24].

The present work attempts to bridge the gap between electrophysiological record-
ings and modeling related to glucagon secretion. Our final aim is to simulate the
whole alpha-cell electrical activity observed during low-glucose periods, which in-
volves all channel models working together; this complex simulation will be better
understood keeping minimal models. These state models are able to simulate in-
teresting experimental conditions, such as channel knocking or specific therapeutic
inhibitions through changes in channel properties. Another interesting goal for the
future is to model zinc influence on the alpha-cell electrical activity. This is relevant
since it has been proposed that zinc ions, co-secreted with insulin from neighbour-
ing beta cells, might be involved in the suppression of glucagon secretion [29]. This
suppressive effect depends on the action of zinc on alpha-cell K 47 p channels, open-
ing them and inducing membrane potential hyperpolarization, which leads to the
inhibition of glucagon secretion.

In order to study the electrical activity related to glucagon secretion following
physiological protocols, the state modeling approach is adequate because these mod-
els are suitable to be used in microscopic simulations. These kind of simulations
allow to understand secretion in exocytotic zones as well as the role of channel clus-
tering, buffered C'a?* diffusion and C'a?* triggering in release. All of them are useful
tools when studying exocytotic dynamics, as demonstrated in other neuroendocrine
cells like adrenal chromaffin cells [26] and pancreatic beta cells [3].
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