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Analysis of the noise-induced bursting-spiking transition in a pancreaticg-cell model
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Nonlinear Dynamics and Chaos Group, Departamento de Matematicas y Fisica Aplicadas y Ciencias de la Naturaleza, Universidad Rey
Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid, Spain
2Department of Physics, Technical University of Denmark, DK 2800 Lyngby, Denmark
(Received 15 September 2003; published 30 April 2004

A stochastic model of the electrophysiological behavior of the pancrgatél is studied, as a paradigmatic
example of a bursting biological cell embedded in a noisy environment. The analysis is focused on the
distortion that a growing noise causes to the basic properties of the membrane potential signals, such as their
periodic or chaotic nature, and their bursting or spiking behavior. We present effective computational tools to
obtain as much information as possible from these signals, and we suggest that the methods could be applied
to real time series. Finally, a universal dependence of the main characteristics of the membrane potential on the
size of the considered cell cluster is presented.

DOI: 10.1103/PhysRevE.69.041910 PACS nuni®er87.17—-d, 05.45-a

[. INTRODUCTION [11] and Chay and Kan{fl2] proposed the stochasticity as-
sociated with the random opening and closing of certain ion
The pancreatig cells are responsible for the secretion of channels to be the main reason for this peculiar behavior. In
insulin, the hormone that regulates the glucose concentratiogoupled cells inside intact islets, the noise would be distrib-
in the blood. Autoimmune destruction ¢f cells results in  uted among the membrane of many different cells and there-
type-I diabetes, and this iliness, if not treated correctly, cafore its influence would be smaller, letting the bursting be-
cause the death of the patient. havior appear. This explanation is commonly known as the
The electrophysiological behavior of pancreaiccells channel-sharing hypothesigdowever, recent experimental

shows bursts in the membrane potentials for intact islets ofeSults on single-cell electrical behavior have shown that the
ituation is not so simple. In fact, it was demonstrated by

Langerhans, where the cells are coupled in groups of. .
1000—10 000 cells. These bursts consist of the alternation ¢fna'd €t al. [13] that about half of the isolated cells do
rst, but showing shorter active phases of a few seconds,

active phases and silent phases. During the active phase, t
membrane potential oscillates rapidly, while it rests almos
unchanged during the silent phase. Besigesells, many

while Jonkerset al. [14] observed isolated cells with active
bhases of several minutes. As a different explanation, the
. . g heterogeneity hypothesfecuses on the different electrical
other cell types show bursting electrical activity]. The 5 oneries of the cells and the existence of a narrow param-
bursting activity can be quantified by means of the so-calleder window for bursting as the key reasons to understand the
plateau fraction, that is, the ratio of time that the cell Spend?)henomenor[S,lS—lZ. A generic mechanism for the pro-

in the active phase over the total recording time. This quangyction of global oscillations callediversityis analyzed in

tity seems to be physiologically very relevant, as several exRrefs.[18,19. The introduction of diversity amongst the ele-
perimental reportf2—4] have concluded that there is a direct ments destabilizes the quiescent state of an excitable medium
correlation between the plateau fraction and the rate of insuand leads to global oscillations even when each individual
lin release. The main reason is that the intracellular calciunglement of the medium is quiescent in isolation. It is also
concentratiod C&*]; increases during the active phase, anditimportant to mention the works by Loewenstegt al.

is generally accepted that calcium has a key role in the sg20,21, where a dynamic mechanism is presented by which
cretion of insulin. The synchronization between the oscilla-the electrical coupling of identical nonoscillating cells can
tions of [Ca*]; and the active-silent alternation of the elec- generate synchronous membrane potential oscillations. Fi-
trical activity has been thoroughly studied by Santédsal.  nally, a hypothesis based on paracrine effects onaticells

[5] by glucagon secreted hy cells in the islet has been recently
The bursting electrical activity in intact islets is often syn- developed22].
chronized, presumably via gap junctional couplift+9]. Since the pioneering work of Atwatet al.[23], in which

However, the bursts get distorted when we consider théhe first biophysical model for the bursting activity in pan-
membrane voltage of smaller clusters, and about one third afreatic 8 cells was presented, many mathematical models
the isolatedB cells only show stochastically distributed have been proposed to study the electrical activity of these
spikes[10]. A complete explanation is still lacking of this cells. The first model, due to Chay and Keid@4], was
difference in behavior between coupled and isolated cellshased on the Hodgkin-Huxley equations for the squid giant
although several possible answers have been proposed. Aixon [25]. During the last two decades, dozens of models
obvious reason could be that the cells change their behavidrave been analyzed, each of them trying to understand par-
when removed from their normal environment. This is aticular processes related to this phenomenon and making use
common phenomenon in cellular biology and an obstacle t@f the most recent experimental results. Of particular impor-
much experimental work. On the other hand, Sheretaal. ~ tance is the appearance of simple two-dimensiof2d))
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maps that produce bursting behavior similar to the electrical The Sherman model is composed of three differential
activity observed in biological neurons and endocrine cellsequations, the independent variables being the membrane po-
A thorough analysis of the synchronization of these maps isential V, the concentration Ca of free intracellular®Gaand
developed in Refq26-2§. the fractionn of open voltage-gated Kchannels. The math-

In the present paper we study a modification of the mathematical expression of the model is presented in the Appen-
ematical model for the pancreat® cell proposed by Sher- dix. As is usual in this kind of cellular mode\/ and n are
manet al. [11]. We have focused our attention on the transi-responsible for the fast spiking process, while the equation
tion from the deterministic model, which represents burstingnvolving [C&*]; describes the slow processes that regulate
cells coupled in intact islet of Langerhans, to the stochastithe transition between the active and the silent phases. This
model representing an isolated spiking cell. We have studie¢chodel only takes into account the ionic currents of the
this model as a paradigmatic example of electrophysiologivoltage-gated K channels, the voltage-gated a&hannels,
cally bursting cell models, as we are interested in developin@nd the calcium-activated *Kchannels. The latter typically
an approach to obtain as much information as possible frorshows just five or six open channels out of the several hun-
a biological system in a noisy environment. In the literaturedreds that each cell has, and the stochastic opening and clos-
several tools have been suggested for studying irregular biang of them is supposed to be the key to understanding the
logical phenomena, such as heart rate variabjiB8} or neu-  destruction of bursts in isolated cells and small clusters. A
ral spiking signalg30], both in noiseless and in noisy envi- very similar model was presented by Chay and K#hg]
ronments. We believe, however, thatcell models warranta and the same results were obtained.
thorough study all by themselves, and our work points in this
direction. Our first goal is to examine how the dynamical A. The deterministic regime

properties of a bursting signal are distorted by increasing h del . he d S dth
noise, in order to find the most effective tools to obtain in- e model presents two regimes, the deterministic and the

formation from such noisy signals. We have used severa?tOChaStiC' We first focus our attention in the deterministic
methods. Some are already known in the literature, but havEed!me. It represents the electrical behavior of a cell in an

not been applied in this context. Other methods are new, sudftact islet of Langerhans. It does not depend on the number

as the analysis of the time series obtained from the numbéff CEllS Of the cluster, as it can be seen as the limit of infi-

of spikes in each burst. Second, we are interested in studyir{%ﬂtely many C,e”S' Depend!ng on the parameters, we obtain a
the transition between the bursting and spiking behaviors oferY Wide variety of behaviors, such as long and short bursts,
the Sherman model, as it relates two easily measurable quaﬁ‘—)nt'mfIOUS splkln_g_, bursts with no sp|kes, etc. We are inter-
tities, the membrane potential and the number of cells in th&Sted In the transition from bursts to isolated spikes. Varying
cluster. Obtaining useful ways to quantify this transition e C&" reversal potential/c, proved to be a good way to

might be of interest to actual biological research as the tranr-eaCh different behavioral regimes, and hence we chige

sition may influence the secretion of insu[i8l,32 as the active parameter. This is illustrated in Fig. 1, where the
We have organized the paper as follows. We start by re_blfurcatmn diagram of t_he system is shown whég, is var
ied. First, we note that if we vary the parameter the trajecto-

viewing the main features of the model, both in the deter- p b ; ber of spikes from1 to 45. th
ministic and the stochastic regime. In Sec. Il we study the'€S Produce bursts of any number of spikes froml to 45, the
ansition from one case to another occurring via a complex

Lyapunov exponents of the system and how they evolve with]le . ; .

the number of cells. In Sec. IV we propose the interspike'p:'xture ofId|ﬁerentdplfurcgakt_|ons. EOVCE‘E 136.5 mv we d
interval time series as a fruitful tool to obtain information MaV€ reguiar periodic spiking, that ‘undergoes a period-
goubllng cascade to chaos whe¥i;, decreases. For

about the periodic or chaotic nature of the system, as well % 134.5 mV | odic wind £ .
its bursting or spiking behavior, even when the level of noise’Ca~ -2 MV several periodic windows 0f Increasing pe-
od are present, starting in their right sides with saddle-node

is acute. In Sec. V, we analyze the time series obtained fromi, ! ) : - .
ifurcations and ending to the left in period-doubling cas-

the number of spikes in each burst, in particular the variatio . .
of their mean and standard deviation in the transition fromcades[see F'g'. Qb)].' If. Vea IS decreased even further, 'the
the intact islet to the isolated spiking cell. transition froml-perlqdlc orplts to(|+;)-pe(|od|c_0rb|ts fl-.
nally becomes a period-adding transition, in which there is a
brief coexistence of both orbits and there are no more chaotic
Il. DESCRIPTION OF THE MODEL regimes separating both behaviors. Detailed studies of this
henomenon in similgB cell models were presented in Refs.
33,34. This wide variety of behaviors will be very useful to
examine the different tools that will be developed later in the

paper.

The model that we have used for our investigations wa
originally developed by Shermaet al. [11], as an update of
earlier models by Chay and Keiz§?4] incorporating the
experimental results of Rorsman and Try&e]. It was for-
mulated to examine if the hypothesis ohannel sharing
could explain the different electrical behavior observed in
isolated and coupled cells. This model is often referred to as Now that we have presented the broad range of signals
the supercellmodel, because the electrical coupling betweerthat the deterministic model offers, it is time to introduce the
the cells is so strongthe conductivityg.=) that all cells main features of the stochastic regime. While the determin-
behave in total synchrony, and a cluster of cells can be coristic model represents an intact islet and could be understood
sidered as a single cell with the total volume of the cluster.as a cluster of infinitely many cells, the stochastic regime is

B. The stochastic regime
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governed byN, the number of cells in the cluster. The main stood as a so-called birth-and-death prod@%. While the
idea is to substitute the expression Ca/Cg;Which repre- influence of these fluctuations in the evolution of the signal
sents the fraction of open channels in the deterministic reis very weak if the number of channgknd also the number
gime, by the stochastic variablg=n,/n,+n; (see Appen- of cells in the clusteris high, it will become very strong
dix). Ky is the ratio between the closing and openingwhen this number is low. In fact, the stochastic signals tend
probability of the kinetic equation associated to the proces$o those obtained by the deterministic regime wiierbe-
(i.e., the calcium dissociation constanwhile n, andn. are  comes very large.

the number of open and closed calcium-activatédckan- This approach for the stochastic regime has a disadvan-
nels. The variables, andn. are stochastic and their evolu- tage when considering it from a computational point of view.
tion is determined by a probabilistic Poisson distributisee  The time stepAt<1/N and the calculations can therefore
Ref. [11] for more details This substitution is valid, as the become extremely long when studying big clusters in order
mean value of the fraction of open channéip=Ca/Ca to get close to the deterministic limit. To avoid this problem
+Kg. For At sufficiently small, the probability that one open and make the time step independent of the number of cells in
channel closes in the intervél,t+At) can be approximated the cluster, we make use of the central limit theorem and

by suppose that the result ofevents of probability? will fol-
A low a Gaussian distribution of mean and standard devia-
N At i
P(O— C) = =0 1) tion o expressed by
I
° p=nP, (5)
while the probability that one closed channel opens in the
interval (t,t+At) is —_—
o=\nP(1-P), (6)
n.At
P(C— 0)=—. (2) as far asP<0.5 andnP>5. We have seen that this ap-
Tc

proximation can be applied to our case fér150, while

7, and 7, are the mean open and closed times for each charfor N<150 we have been using the algorithm explained

nel, respectively, being before. As it will be seen during the text, the matching of

both algorithms aroundll=200 cells is good enough from

a qualitative point of view, although several quantitative

results differed slightly depending on the model used. Fur-

thermore, whem becomes large, we can approximate the

_ distribution of the probabilityP of each event with a
7o = 1000 ms. @) Gaussian of meatP) and varianceP)(1-(P)) /n. As the
Shermaret al. [11] solved the stochastic system choosingstandard deviation of the distribution verifies

the time stepAt short enough to make the probability of

opening or closing a channel in the inter¢glt+At) smaller i i

than 0.1, ensuring then that the opening or closing of two T \ﬁ * N (@)

channels in that interval of time is a rather improbable event.

In this way, the fraction of open channels suffers permanenivhen the number of cellsl—«, P tends to its mean value

noisy perturbations after every time step, and can be undetP) and the stochastic model resembles the deterministic

7.Ca
Kq

To=

: ()
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P6 Ch

FIG. 2. Plots of the membrane
potential forP6, Ch, andP40. (a)
Deterministic case(b) N=1000,
(b) (c) N=10. We can see that the
noise affects each orbit in a differ-
ent way. For small values oN,
only P40 still shows a recogniz-
able bursting behavior.

(c)

-60
1 1 1 ] 1 I 1
50000 60000 70000 50000 60000 70000 50000 60000 70000
Time (ms) Time (ms) Time (ms)
model (see Ref[12] for more details Finally, it is worth Figure 3 shows the largest 1720 (A, from now on as a

saying that it is obviously possible to bridge the Poisson andunction of the parametev, for different sizes of the cell

the Gaussian approaches by considering multievent presluster. The lower line corresponds to the deterministic

cesses in the Poisson distribution. model, that is, the limit of infinitely many cells. We can
In Fig. 2 we can see a plot for the membrane potential opbserve that most of the chaotic orbits fall in a narrow range

a periodic orbit of 6 spikes per buré¥c,=131 m\), a cha-  Of values ofVc, aroundVc,=135 mV, that is, in the zone of

otic orbit (Ves=134 mV), and a periodic orbit of 40 spikes Small number of spikes per bur€iSB from now on. Fur-
per burst(Ve,=111 m\). From now on, we will refer to thermore, it is clear thaX_ decreases almost linearly when

. . Ve, decreases, that is, when NSB increases. The calculation
e e o hs Aoy s o A SOt b Wi many spies ae more robust
. » : than those with few spikes. The other three curves in Fig. 3
N=1000 cells and foN=10 cells in the stochastic regime. It were calculated foN=5000 N=1000. andN=150 cells in
is clear that the noise affects each orbit in a different wayne stochastic regime. The vaIues)c,Lf suffer a translation
While decreasing the number of cells makes the average timg,yards higher values whe decreases. This makes sense,
many spikes per burst are more robust than those with fewme series should be infinity. However, even fidE 150
spikes per burst. FAN=1000 it seems that the chaotic orbit cells, when the level of noise is quite high, the main features
still maintains its main properties and can easily be distinof the deterministic curve are still recognizable, and there is
guished from the periodic orbits. However, f=10 only  a range of orbits that still show negative values of the
the orbit of period 40 still shows structures that resemble théyapunov exponent. Furthermore, the slope of the approxi-
bursts. For such a small cluster, the two other modes alreadyately linear curve is maintained even for very small clus-
show exclusively a randomly spiky behavior. Obviously, allters. This means that even in very noisy environments we
signals will be even more spiky if we plotted them fr ~ can find traces of the original properties of the orbits, their
=1. robustness, their periodic or chaotic nature, etc., and the de-
velopment of tools to pursue this idea will become the main
goal of our work.
1. LYAPUNOV EXPONENTS Figure 4 shows the variation of for the periodic orbits
P6 andP40 and for the chaotic orb€h, when we decrease
the number of cells in the clusté&t (from right to leff). We
have started with a very high value Nf where the stochas-
X Yic regime is almost indistinguishable from the deterministic
nents, one of them always being equal to z@rorrespond-  oime The values of, are nearly constant until a threshold
ing to the direction of the floy The other two can be either y5jye around=1C° is crossed. After this point, all curves
positive or negative. If at least one of the Lyapunov expo-siart to grow and the periodic orbits eventually cross the
nents is positive, then the orbit is considered to be chaotiqygrizontal axis. Obviously, when a periodic orbit shows a
while the orbit will be periodic if all of them are smaller or positive value of\, it is impossible to recognize its periodic
equal to zero. As we showed in the last section, varying gature any more. However, as observed in Fig. 3, the value
parameterin our caseVc,) we can obtain a wide range of of N for which this happens depends strongly \ég,
periodic orbits, from a few to many spikes per burst, as well The Lyapunov exponents shown in Figs. 3 and 4 have
as chaotic orbits. been calculated making use of the algorithm proposed by

The Lyapunov exponentd E)\; (i=1, ... d, d being the
dimension of the systengive useful information about the

041910-4
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Wolf et al. [36] for mathematical models. However, we are periodic orbits of low NSB, periodic orbits of high NSB, and
also interested in calculating the Lyapunov exponents anashaotic orbits in noisy environments.

lyzing the signals as time series. We have used the algorithm
due to Rosensteiet al. [37], already compiled in th&ISEAN
packagg38]. In order to apply this method, it is necessary to
calculate the optimum time delay for each time series, and Since the work of Saud39], in which the possibility of

we have chosen the value that minimizes the mutual inforreconstructing chaotic attractors from interspike intervals
mation function. The results of_ analyzing the signals as was presented, several works have focused on the study of
time series coincided with the ones obtained with the Wolftime series for interspike intervald0—43. In fact, the inter-
algorithm for models, both for the deterministic case and thepike intervals(SI from now on have proved to be a fun-
stochastic case with high valuesNf For very noisy signals damental source of information to characterize the nature of
(that is, for low values oN) extracting Lyapunov exponents many biological signals. Furthermore, they are easily mea-
from a time series is always a difficult task, but we were ablesurable in experimental data, and this fact encouraged us to
to reproduce the main features shown in Fig. 3. For very lowstudy them in our system.

values ofN, signals with low NSB show positiva; and
therefore are indistinguishable from chaotic orbits, while the
periodicity of signals with high NSB is recognizable even in
the presence of a quite high level of noise. In the following The study of return maps is a well known method to dis-
sections, we will examine in depth the differences betweeringuish chaotic from periodic signals in systems with weak

IV. STUDYING THE INTERSPIKE TIME INTERVALS

A. ISI return maps

0,004 |- il
0002 e, e, g
| oo. .......“ . * "no.oo.'..i................ . Vca=1 34 (Ch) -
0 b ..."_?.' - 050000400000 essscensy
_ | e ————, V=131 (P-6) |
'g 0,002 |- - FIG. 4. Largest Lyapunov ex-
=~ | i ponent as a function dfl for the
5 eriodic orbits P6 and P40, as
< p
-0,004 ]~ - well as for the chaotic orbi€h.
0006 ., -
I T V. =111 (P-40)
'0,008 — ....".”".""uuuuo.-.o“u_ ca by
1 1 lIIIIII 1 1 IlIIIII 1 1 IIIIIII 1 1 IIIIIII 1 11 1111
10° 10 10° 10° 10’
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chaos. We have started our approach to ISI analysis studyinghenomenon. In our case, the trajectory spends the active
qualitatively the return maps of the ISI time series, in whichphase of the bursting activity developing several iterations
we plot the(n+1)th ISI against thenth ISI. The six small close to the bottom-left extreme of the map, and eventually
crosses in Fig. & show the return map for the periodic escapes from it to make a big loop that represents the silent
orbit P6 (Vc;=131 mV), while the continuouscurve in the  phase.

same figure shows the return map ©h (V=134 mV). The apparent continuity of the chaotic curve shows that
Figure %b) shows the return map for the periodic orbi#40  almost all ISIs between a minimum and a maximum value
(Vea=111 m\) and in the inset a zoom of this picture is are possible, while there is a forbidden range in the periodic
plotted. It is remarkable that the return maps for the periodi¢ase. This qualitative difference has proved to be of signifi-
orbits are composed of three isolated groups of dots, whil€ant importance when trying to characterize the nature of an
the chaotic signal gives rise to an apparently continuou®rbitin a noisy environment. Figure 6 shows the return maps
curve. Strictly speaking this curve is not one dimensional, agor the same three orbit$6, P40, andCh) for N=5000 and

a chaotic attractor necessarily shows a fractal dimensiofl=500 cells. We can see that for a certain amount of noise
[43]. Due to the low chaoticity of this model, a unimodal (N=5000, the periodic orbit still shows three isolated
map like this one would reproduce very precisely the ISIgroups of dots and, therefore, its periodic nature is clearly
time series of our 3D continuous time model. Similar resultsrecognizable. The dots with small I$h) and ISI (n+1)

have been obtained, for examplefor the Belousov+epresentinterspike intervals between two spikes in the same
Zhabotinskii reaction44,45, among many other systems. burst, while the dots with one high coordinate represent the
Furthermore, this kind of map gives rise to an intermittencylong interspike interval between two different bursts. As

N=5000 N=500
& 4000 _ﬁ;-"i‘- (a) 5 (b)
E W E 5 P6
22000 o~
@ ) WA
L ‘ B ot rvasiiras . - FIG. 6. ISI return maps foP6,
0 2000 4000 O 2000 4000 Ch, and P40. The pictures to the
— 4000 @ (d) left correspond taN=5000 cells,
g L. while the pictures to the right cor-
5 e Ch respond taN=500 cells. The three
B 2000_,4‘-?": ; ST groups of dots in the return map
- 0- m;:-", ~ < eomoinan A m&%&aﬁ‘ { of a periodic orbit become more
0 2000 4000 2000 4000 and more spread when the size of
20000
(© " the cluster decreasgand there-
z - - fore when the noise is increased
£ 10000 -1 Pd0
£
3 L B
o _ r 1 I ----- I_- [ r 1 -‘r-'_ o 'I
10000 0 10000
IS], (ms) ISI, (ms)
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FIG. 7. ISI histograms foP6.
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these three groups of dots get more and more spread becausterval due to spikes belonging to a certain burst. However,
of the increasing value of the noise, the distance betweeane bar, representing the interval between the first spike of a
them diminishes. Eventually there is a value of the numbeburst and the last spike of the previous burst, will be found at
of cells Ny that makes all points collide in an indivisible high values of the interspike time interval. In the presence of
single group. Using this method, a periodic orbit is indistin-small noise, the first group of-1 bars will become a con-
guishable from a chaotic one fdr< Ng, but we will be able  tinuous d_|str|but|on, and the isolated bar will be_ widened into
to characterize its periodic or chaotic natureNifis higher @ Gaussian-like curve. We have namedhe distance be-
than this critical valueN, depends on each orbit and a robustWeen the closest extremes of both peaks and this quantity
method to measure it must be defined. If we examine Fig!Vill be very useful for our analysi¢h, and hppe will be

6(b) with the naked eye, we can deduce thato¥500,P6  defined '?] the foII%yvlng sec'glc)nh 5 ¢ noise the IS
is already mixed, and therefore it shows a similar aspect to ﬁisltgg?a%w a}gﬂgv\g ;t’cg\r/l(;gulguts iu?vzerr‘ncs dg onu(ilso? ;e(\e/elrall
:—?]?Somzegr::twg: ;r:elesaasr:wzsa;n ?ouunéhogﬂgllgtfgog%g)& peaks[see Fig. 8&)]. Therefore, the value af is zero for a

hile for that val N. P40 clearl intains it iodi chaotic orbit no matter how noisy the system is, but for a
while tor that value ol clearly maintains Its periodic ,qiqqic orbitd will decrease and tend to zero when the noise
nature and still shows a gap between the three differe

. f the system grows and makes the two peaks come closer.
groups of dOtE[S‘?e Fig. 6) and &f)]. However, the use Of. From this point of view,d becomes a natural parameter to
numerical techniques related to clustering theory can in

. . > _distinguish a chaotic orbit from a periodic orbit in a nois
crease substantially the effectiveness of this method, Obta”la'nvirc?nment P y

ing lower values forNy, and distinguishing periodic from Figure 7 shows the IS histogram for the periodic oR6t
chaotic signals even in very noisy environments. This factand different values oN, while Fig. 8 shows the same
will be shown in the following section. curves for the chaotic orbiCh. The height of the second
peak, that we will calhy, and the distance between peaks
B. ISI histograms are shown. Figures(&) and §a) show the deterministic case

In order to develop these ideas and obtain more quantitﬁr each orbit. Figures(B) and &b) show the histograms for

: ; : : =1000. If the noise grows strongly, as it is shown in Fig.
tive results, we have applied several numerical techniques > .
the histograms of interspike intervals. The ISI histogram is a(C) and &0), Whgrerl:I—SOQ, then the tails of both pelaks
very powerful tool, because it gives information about bothtOMe In contact In t € pe.”Od'C case and_ We can no longer
the periodic or chaotic nature of the orbit and about its burstpl's'“ngJUISh a penod_lc orbit fro_m a chaqnc O.QBHIeSS. we
ing or spiking character. make use of numerical .clusterlng techmqpé‘snglly, Figs.
7(d) and &d) show the histograms fd¥=100, which are the

typical ones expected for a random spiking process.

As was already mentioned, measurithpy analyzing the

If an orbit is periodic, then the histogram consists of sev-histograms with the naked eye can result in rather ineffective
eral disconnected bars, each of them representing one I&teasurements, especially for low valued\ofFirst, it might
(assuming that the bars are thin enougdris is seen in Fig. be difficult to separate the dots that belong to each peak in
7(a) for P6. If the bursts have spikes, them—1 bars will  very noisy signals. To solve this problem, we have made use
have low values of ISI and will represent the interspike timeof the Hartigan's k-means clustering algorithfd6,47. This

1. The periodic or chaotic nature of the orbit.
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numerical technique classifies the dots into two clusters, theiencies of both methods. We are interested in measitjng
ones that represent interspike intervals and the ones that refirat is, the value of the number of cells that makes all points
resent interburst intervals. Second, we must obtain robusgtollide in a single inseparable group, and, therefore, makes it
values ofd that are not strongly influenced by isolated mea-impossible to distinguish the periodic orbit from a chaotic
surements or the length of the time series. A good method isne whenN<N,. As we already said, a chaotic orbit should
to suppress the spurious isolated values placed in the gahowd=0 ms for all values oN. However, as our method
between both peaks erasing the highest 1% of the cluster ®rases several measurements from a region of very low
the left and the lowest 1% of the cluster to the right. After population, a finite gap appears also in chaotic time series.
these two transformations, we measdgg, as the maximum Our algorithm has proved to give values of aroudgl,
value for the remaining cluster on the ledt, ., as the mini- ~200 ms for all values o in Ch. Therefore, a periodic
mum value for the remaining cluster on the right, ashd orbit should show sufficiently bigger gaps to be recogniz-
=dmax—dmin @s the distance between both valysee Fig. able. As a criterion, we have decided to defiefor a pe-
7(b) for an examplg riodic orbit as the value oN for which d=dy~1.5d¢

In Fig. 9 we have plotted the variation with of dp, ~300 ms. Following this criterion, and observing Fig. 9,
dmax @ndd, for the periodic casd’6, when we apply the Ny=300 cells forP6. The high efficiency of this method is
clustering algorithm. We have also plotted the valuesdof remarkable, as the level of noise that the signal suffers when
that were obtained with the naked eye to compare the effiN=300 cells is quite high. We measurddlirectly from the

4000_ T T IIIIIII T T T TTTTIT T T IIIIIII T T IIIIIII T T IIIIII_
O max 0oy
E dmax .............. Fe SR © ]
3000~ B Qo ]
- FIG. 9. Variation withN of d,
C o Omax anddpy, for P6, when we
a C apply the Hartigan’s clustering al-
£ 2000 :_ gorithm (circles. The values of
° - d (naked eye) obtained from direct measurement
C o are also shown(triangleg. Ny
N o ~ 300 for P6. The two solid lines
C g0 © represent mathematical approxi-
1000~ 90 d mations ofd.
2 2 o &
T ——e Qe
dOE _____ dmin (Det) E
O- ! 1 IIIIII| 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIII_
10> Ny 10° 10* 10° 10° 10’
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histograms and we obtained much higher valuesNgf other[see Fig. 1(b)], and applying our clustering method
(aroundNy=500 for P6, as it was shown in the preceding we see thalNy=15 cells for P40. Figure 1{Qc) shows the
section, and can be now observed in Fig. 9 histogram forN=10 and now the second peak is no longer
The relations betweed and N plotted in Fig. 9 have present. However, there is a long tail, which means that for
proved to fit very accurately a mathematical expression ofthis level of stochasticity the signal presents a mixed nature
the form of varied bursts and isolated spikeee Fig. 2 Finally, Fig.
AN 1 10(d) presents the typical histogram expected for a random
- spiking signal.
d=dpeftanh(a In N+b)] = dDet{m] , (g °PHIngswg

2. The bursting-spiking transition
where dpe=2930 ms,A=0.077+0.008,B=0.48+0.01, for

the higher curve(corresponding to the clustering algo-  Our system shows bursts for most values of the param-
rithm), anddpe=2930 ms,A=0.057+0.005B=0.47+£0.01, eters. This behavior is shown in the ISI histograms as two
for the lower curve(corresponding to the direct measure- differentiated peaks. However, if the system becomes very
men). The correlation coefficients are=0.9977 andr  noisy, the organized structure becomes spiky, such that the
=0.9984 respectively. We can observe that the expori2nt histograms tend to show a unique peak. In order to charac-
of the number of cell&N is approximately equal to 1/2. In terize this transition, we have measutedthe height of the
fact, the dependence of different signal propertiesydbh  second peak. This height tends to zero when the system gets
will be present all throughout the work and we will refer more and more noisy and, therefore, we can say that the
to it later in the paper. system does not show bursts any more when the two peaks
Finally, it is reasonable to examine whether the number obecome indistinguishable in the histogrgsee Figs. @)
spikes per burst might influence the stability of the signal.and §d), whereN=100].
Figure 10 shows the ISI histograms fB40 and four very The shape of a histogram is in fact an approximation of
low values ofN. It is clear once again that the more spikesthe probability density function of the signd@DF from now
per burst(NSB), the more robust to noise the orbits are. Foron). The histogram only tends to the invariant curve when
high values of NSB, we obtain lowek,,, because the spikes there is a large number of points for each bar and the width
in the burst become narrow and higtgs,, because the si- of the bars tends to be very narrow. Then, for finite data, the
lent phases get longer. Hence, higlierd,,.x—dmin @are ob-  height of a peak in a typical histogram depends strongly on
tained and\, is smaller than for orbits with lower NSB. In the width of the bars and the length of the data series. For
the case ofP40, d=6500 ms whend(P6)=d,, that is, this reason, we have measured the helghtirectly from
aroundN=300. AsN=<150 in Fig. 10, it was necessary to the histograms, and we have also calculatgge approxi-
use theN dependent time-step stochastic method to calculatenating the second peak with a mathematical expression. We
these curves, and therefore this figure was far more timbave verified that the secondary peaks fit quite accurately to
consuming than the other ones. Figurédl&hows the his- a normal distribution by applying a Gaussian quantile-
togram forN=150, where it is clear that the periodicity of quantile test to the data. After calculating the averagend
the signal is still recognizable. Only when we examine clusthe standard deviatios for each signal, we obtain the maxi-
ters of around 25 cells do the tails of both peaks touch eacmum of the Gaussian fit as
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1 (n, obtain hppe=4Xx 1078N0-50£0.02 The correlation coefficient
PDF = \W H ' 9 of the linearization of this expression i5=0.9975. Ac-

cording to this approximation and taking into account Eq.
The termn,/n,, wheren, is the number of data points in the (9), the standard deviation of the Gaussian approximation
right cluster andh, the total length of the 1SI time series, is satisfies

necessary to take into account the totality of the data in the

normalization. Figure (b) showshy, hppg, and the Gaussian o= %(@> o 1 o i, (11
approximation for the second peak®6 for N=1000cells. \"thﬁDF N heor VN

Figure 11 shows the variation dfy and hppe for the
periodic orbitP6 whenN is varied. We can see that for hig
values ofN, hppe andhy show very different behavior. This

h It is worth noting its relation with the real source of the noise
in our system. As discussed in Sec. Il, the channel opening

is due to the fact that the bars of our histograms have a fixeand c_Iosjng probabilities of a single channel f°”°W. a.Gauss-
width of wy=50 ms, and therefore the Gaussian fit for sig—Ian distribution of mearu.=(p) and standard deviatiomr

nals with very little noise is so narrow that these bars are faf* 1/vVN- This fact points to the possible existence of a
too wide for them. For that value @i, h, tends to the fixed 9e€neral law, in which many different phenomena related
value of (1/wy)(n,/n)=0.003 333.... Howevehppr grows to this sxgtem are scaled by the square roo_t of the number
indefinitely, as the probability density function will tend to a Of C€lls VN (as it happened, for instance, in the relation
Dirac delta function in the deterministic limit. As we can seePetweend andN).

in the figure h, andhppe are very similar folN < 10P, as for If we decrease the size of the cluster belsy . there is
this range ofN the Gaussian curves are wide enough to be? valueN, for which the second peak becomes ilbk,,
accurately approximated by the histograms witg=50 ms. =~ 200 cells forP6). For N<Ny, , it is not possible to find a

However,hy, shows slightly higher values thap. Thisis  duration of the silent phase that is more probable than the
very common in mathematical approximations of histo-rest, and therefore we can say that beyond this point we have
grams, in which the typical noisiness of the histogramsa bursting-spiking coexistence, described by a unique long
makes the maximum of the fitting generally lower than thetail. This long tail finally disappears and for very low values
height of the highest bdisee Fig. ) for an examplg of N we can only distinguish a spiking behavior.

If the noise is sufficiently high, the tails of the two peaks We have calculated the same curve @i and P40 and
superimpose one onto the other, and the calculatidm.gf ~ very similar results were obtained for the chaotic signal. In
starts to lose precision giving exceedingly high results. Weghe case oP40 the slopes of the curves are also very similar
have labeledNy,, _the approximate value beyond which the to the ones shown in Fig. 11. However, this case shows much
second peak becomes significantly different from a Gaussiapmaller values ohy andhppr because the relative weight of
and therefore this technique begins to fail. The curvhgf-  the second peak in the histogram is very small; in fact it only
can be very accurately approximated by an expression of th&€presents one spike out of 40. This makes, obviously, the

type acquisition of data a harder task.
heor = AN®. (10 V. TIME SERIES OF NUMBER OF SPIKES PER BURST
If we use for the fitting the values witN=Ny,___, in order to In the last section of this work, we consider the variation

avoid the values ol for which both peaks superimpose, we of the time series formed by the number of spikes per burst
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NSB, when we decrease the number of cells. As we alreadgurrounded by a limit cycle. The middle branch is formed by
mentioned in the Introduction, the model Bfcell that we  a saddle point FP2 whose manifolds surround the limit cycle
are studying was created to explain why the bursting behavand prevents the orbit from jumping down to the silent
ior of intact cells in clusters is converted into random spikesgphase. The lowest branch of tecurve corresponds to the
in isolated cells[11]. Our target in this section is to study stable fixed point FP3, which attracts the orbit in the silent
such transition, in particular making use of a quantity thatphase. The typical dynamics of the signal is to follow the
again is easy to measure experimentally, the NSB time sdimit cycle turning around FP1, while Ca increases. When
ries. It is known that a precise study of a time series might behe limit cycle collides with the saddle point FP2 in a ho-
done from different perspectives and many different toolsmoclinic bifurcation, the manifolds of FP2 collapse into a
can be used. We have worked calculating the mean and tHemaoclinic orbit which destroys the limit cycle. In the fol-
standard deviation of different signals. lowing moment, the homoclinic orbit is destroyed, and the

Figure 12 shows the NSB time series f&8 andP40, for ~ unstable manifold of FP1 becomes the stable manifold of
the deterministic regime and an example of the stochastiEP2 forming a heteroclinic orbjsee Fig. 1&) for a diagram
regime. In the deterministic regime, all bursts show the samef the manifolds of the fixed points in that momgrs the
number of spikes if the orbit is periodic. Therefore, the mean
wu is an integer and the standard deviati®rs zero. How-

T | T I T I T | T ]
EP1_____dV/dt=dn/di=0 (@]

ever, when noise is introduced, the NSB signals start to fluc- E -40 I
tuate makingu and o vary. The dashed lines in Fig. 12 plot g FP2. oo™ Caaoo
the convergence of the mean for P40 and P6 whenN -60 L A
=1000. 06 065 07 075 08
Ca UM
“20epy ' V/dt=dn/dt=0 (0)
A. Evolution of NSB in the presence of noise g 40— e ]
We can observe that the noise makes some bursts show > soF — "';'\"("'(;;;t_o J ]
more spikes than the deterministic signal, while others die i £ —t )
before reaching this value. To understand this double behav- 0,5 0,55 0.6 0,65 0,7 0,75
ior, the system must be analyzed as the interaction between a .20 Ca M)

2D fast subsystem and the influence of a slow variable work-
ing as a parameter. As discussed by Belgttal. [48], this
approach is incomplete and, for instance, cannot explain the
existence of chaotic dynamics. However, it is sufficient for
our purposes. Figures (@ and 13b) show the deterministic

P6 and P40 orbit in theV-Ca plane. The nulicline for V

—-n ([dV/dt]=[dn/dt]=0) and the nullcline for C4ddCa/dt

=0) are plotted in both figures. Thenulicline is formed by FIG. 13. (a) Deterministic signal foiP6 in the V-Ca plane(b)
the fixed points of the fast subsystem. These fixed points argeterministic signal foP40 in theV-Ca plane. The&/-n and the Ca
plotted with a solid line if they are stable and with a dashedhuliclines are plotted both iga) and (b). (c) Unstable points FP1
line if they are unstable. The highest branch of theurve  and FP2, stable point FP3 and their invariant manifoldsP®rjust
corresponds to an unstable fixed point labeled with FP1. It igfter the homoclinic bifurcation.
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20 ' ' ' ' ' " (a)d right knee of thez curve, the unstable point FP1 collides with
dV/dt=dn/dt=0 FP2 in a saddle-node bifurcation. In that moment, the het-
eroclinic spiral disappears and the particle is necessarily
pushed to the remaining attractor FP3, no matter how strong
the noise is. In fact, the maximum NSB45 for the values

of the parameters we are using. Figurgbhdwhere an ex-
ample of a noisyP40 orbit is plotted, only shows two cases
of these extra-long bursts, giving us an idea of the infrequent
occurrence of this phenomenon.

The second mechanism that allows the trajectories to
show longer bursts and compensate the noise-induced pre-
mature death of the active phase is only possible for systems
with low NSB. We have named it theinjection effectand
can be understood if we analyze in detail the nd#yorbit
in Fig. 14@). In that figure we can observe that the orbits for
. P6 and P40 show several evident differences. We must re-
05 0,55 06 0,65 0:7 0,75 member thatP6 is less robust thanP40 (the largest

Ca (UM) Lyapunov exponenk, of P40 is much smaller than the of
P6). For this reasonP6 shows strong noisy fluctuations

FIG. 14. Stochastic signals fét6 (a) and P40 (b) in theV-Ca  when crossing the middle branch of tlzenulicline (the
plane, wherN=1000. TheV-n and the Ca nuliclines are plotted.  dashed ling in its way to the lower branch, that is, to the
. silent phase. The orbit crosses the Ca nullcline just before
?’crossing thez nullcline, and therefore it tends to move to the
IEft (to lower values of the calcium, G.&s the orbits are not

o robust, they start a pseudorandom walk backwards. Some-
collides with FP2 in a saddle-node bifurcation, and the tra-ime‘cf’ this_ erratic movement reaches the attractor FP1 and
jectory restarts the process reaching the active phase afg€ Signalis pushed to the silent phase. However, we can see
following once again the limit cycle. in Fig. 14a) that for sufficiently ;strong noise it is qwtg com-

Figure 14 shows th@6 and P40 orbits whenN=1000, Mon that the orb|t§ cross thg middle branch ofzmmllcl|ne,
plotted in theV-Ca plane. When the system suffers someMOVe to the left in the region betwgen'the mldQIe and the
kind of noise, the situation is transformed in the following lower branch, and restart a new spike in the middle of the
manner. While the trajectory is turning around the limit cycle Purst. This little loop in thev-Ca plane takes so little time
inthe active phase, the boundary between the limit cycle bahat the new burst is born totally joined to the old one, re-
sin and the FP3 basin is formed by the stable manifolds ofulting in an extra-long burst. Furthermore, .the reinjection
FP2. A particularly strong perturbation might push the par-8fféct can be very frequent, because the orbit does not need
ticle beyond this boundary, make it cross the middle line ofthe help of noise to survive up to the homoclinic bifurcation,
the z nullcline, and reach FP3 and the silent phase. Thi€S it happened with the former mechanism. Nevertheless,
mechanism explains the bursts that show fewer spikes thafiS Phenomenon does not exist in systems with high NSB.

the deterministic orbit and it was already studied in Ref]. e can see in Fig. 1#) that for P40, when the orbits cross
However, we have found two different mechanisms that exthe dashed line of FP2 and go down to the attractor FP1, they

plain the existence of extra-long bursts in a noisy environfollow an approximately straight line. This is because they
ment. To present the first one, we must analyze the invariar@® much more robust and do not show the erratic movement
manifolds of the three fixed points shown in Fig(d3fora  S€en forP6. However, another important fact is that in this

value of Ca just beyond the one that corresponds to the hd:2se the middle branch of thenulicline is over the Ca
moclinic bifurcation. First, the orbit must survive in the pres- Nullcline. Therefore, when the trajectories cross the dashed

ence of noise until it reaches the point in which the limit i€ the system pushes them to the right until they reach the
cycle collides with FP2 and gets destroyed. Up to that point,Ca nullcline, making |m_p0_55|ble the reinjection until they are
it has already made as many spikes as the deterministic sig20 far away from the limit cycle.

nal. The typical behavior is that it leaves the active phase and
falls to the stable fixed point FP1. However, the unstable
manifold of FP1 has become the stable manifold of FP2 via
a heteroclinic connection. As the unstable manifold of FP1
used to die in the limit cycle, it still shows a very dense In order to measure quantitatively the relation between the
spiral around FP1 before reaching FP2. For this reason, if thBSB time series and the number of celNs we must take
orbit is pushed by the noise towards the interior of this spiraljnto account that measuring the number of spikes in each
the trajectory can make several extra spikes before gettingurst is not always an easy task, as in very noisy environ-
close to FP2 and then reaching FP3. This situation cannot baents it might be difficult to define the concept of burst.
repeated indefinitely, however, and there is a maximum numSeveral methods can be used. We have focused our interest
ber of spikes per burst. When the value of Ca reaches then studying the membrane potential, as this potential is easy

FP3. This is the end of the active phase, as the trajectory
obliged to cross the Ca nullcline and relaxes into the stabl
fixed point FP3 while Ca decreases. After some time, FP

B. Dependence of the mean value of NSB on the number
of cellsN
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to record using patch clamping techniques. Other methodshe deterministic limit. The standard deviatioasfor both
using for example the Ca signal, could also be applied.  orbits are shown in Fig. 16). Surprisingly, the mean value
First, a burst can be defined as the signal between twof the periodic orbit does not depend Binat least untilN is
intersections with a certain value of the membrane potentiatery small. Therefore, for low NSB, the effect of the noise
chosen in the silent phase, that is, between the values of tHaIshing the trajectories downwards in #teCa plane, cross-
voltage in the unstable point FP2 and the stable point FP3Ng the z nulicline and making them enter prematurely the
V=-60 mV has proved to be a good choice. We have nameﬁ",er_“ p_hase is balanced by the Iengthc_enln_g influence of the
this method thentersection algorithmin this case we must '€injection effect, and the net conclusion is that the mean
check that between these two intersections the cell shows Yp'U€ # is maintained approximately constant. We have not
least one spike in order to avoid spurious bursts due to smalj °ttéd the value of the mean &6 whenN <150 andCh

: : : : or N< 300, because here the destruction of the bursts is so
noisy fluctuationeve measure one spike when the signal for ’ ) . ,
the voltage membrane intersects a sufficiently high value, f0§trong that the two methods give substantially different re-

examplev=—35 mV). Second, we can use the ISI time Seriessults. FurthermorelN~ 150 is the limit of the Gaussian ap-
PIEV= e ’ i proximation of the stochastic process and we have already
to define a burst, in what we call the I&lgorithm As we

. S i mentioned the slight changes in the results that this fact can
already _menUongd, periodic orbits shai#0 whenN= Ny, produce. It is remarkable that the mean value for the chaotic
whered is the distance between the extremes of both peakgpit s also constant. It is approximately equal to 5, which is

in an ISI histogram. FON>Ny, we know that there are no  explained if we look at its location in the bifurcation diagram
significant values of ISI belonging {@y,, dmax and, there- iy Fig. 1, just by aP5 orbit. The standard deviation for the
fore, a burst will be finished whenever ISISC, ISl being  periodic orbit is zero folN=5x 10°, which means that for
any value that verifies ISE [dnin, Omad. FOr N>Ng, this  N>5x 10° the noise is not strong enough to vary the num-
method gives exactly the same results as the former one. ber of spikes in any burst, all of them showing six spikes.
For chaotic orbits, in whicli=0 for all N, as well as for  The chaotic orbit, however, starts wittr= 0.9 in the absence
periodic orbits in the rangBl<Njy, the ISI algorithm proves of noise, and it maintains this value until it reachés: 10,
to be of little use. However, by again making use of the ISlwhere it also starts to grow.
histograms it is possible to choose a critical value of the Itis widely known that when the number of cells is small,
interspike interval 1SIto distinguish spikes from bursts. The the bursts are destroyed and they are replaced by a more
histograms are continuous in the considered cases, butrandom spiking behavior. However, the variation of the mean
good choice is to use the value of the ISI for which thevalues in Fig. 16a) for orbits with low NSB does not seem
histogram shows a minimum between both peaks. Of courseo be consistent with this result. In order to clarify this fact,
this method is only useful foN> Ny, , that is, for values of ~we have analyzed in detail the approach frbim 150 toN
N for which the histograms still show two peaks. After sev-=1 for P6. We have done it only from a qualitative point of
eral tests, we have seen that the results of this method axgew, as for very smalN the signals are so noisy that there is
very similar to the ones given by the intersection algorithm,not a robust way to measure the number of spikes in each
only differing by a few bursts per time series. burst. For small values o, we obtain very short silent
Figure 15%a) shows the variation withl of the mean value phases. Furthermore, the signal between two spikes of the
u of the NSB time series folP6 and the chaotic orbit. Up to same burst starts to reach very low values of the voltage,
200 bursts have been computed to calculatendo. These sometimes they even get down to the silent ph@seund
quantities are calculated for valuesi& 18, limit in which ~ V=-60 mV) and go up again to make another spike. There-
the orbits can be supposed completely indistinguishable frorfore, the concept of burst disappears as these structures be-
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come a mixture of independent spikes, sometimes very clos®re, we obtain another example of the existence of a gen-
together and sometimes separated by a short silent phase.dral dependence that relates the dynamicg of our system
conclusion, we do not have a gradual transition from burstsvith the square root of the number of celsl.
to spikes whereu tends slowly to 1. What we see is a de-
struction of bursts produced by a growing noise that, even-
tually, is able to make the trajectory jump in any moment
from the active to the silent phase and vice versa. In this work we have studied a mathematical model of the
Figure 16 shows the variation @f and o for a periodic  electrophysiological behavior of the pancreagicell. Using
orbit with high NSB, in particular foP40. The results forr  this model as a paradigm of a bursting cell, we have focused
are very similar to those obtained f86 andCh in Fig. 15,  our attention on the transition from the deterministic limit of
with the difference that the standard deviation reaches highdarge number of cells in an intact islet to the very stochastic
values and starts to grow for highlr(we have not plotted behavior of an isolated cell. As mentioned in the Introduc-
the values olr for N<150 because, due to the inapplicabil- tion, there are discrepancies to the hypothesis defended in
ity of the Gaussian approximation for such smdjlthey did  this papenthe so-called channel sharing explain the dif-
not fit very accurately with the rest of the pointslowever, ferent behavior shown by intact islets and isolated cells.
the variation ofu is totally different from that shown b6,  However, the signals for the membrane potential obtained
as it clearly decreases whéhdecreases. The reason for this from the model appear quite similar to the actual signals
opposite behavior is the already mentioned inexistence of thebtained by the patch clamping techniquid§,32. Further-
reinjection effect to balance the premature death due to thmore, our analysis explores a stochastic regime that is not
noisy escaping from the limit cycle basin. In this case onlybased on the simple addition of a noisy factor to the equa-
the first mechanism to show extra-long bursts is possible antions, but is one of the few examples that describiesogi-
eventually a few bursts show more spikes than the determireal noise in terms of the underlying processes that generate
istic case. However, we already mentioned that this is a rarghe noise. For these reasons, we decided to use it to examine
phenomenon, which cannot compensate the shortening effeatich tools are the best to obtain information from a burst-
of the noise. Furthermore, it is remarkable that the variatioring signal measured in a very noisy environment.
of the mean valug. with N for P40 can be described very  We started by analyzing briefly the main features of the
precisely by the following expression: deterministic model, and we have shown that depending on
ANP - 1 several parameters it can present continuous spiking, bursts
_ _ - with no spikes, and a wide range of bursts containing from
1= poeltanh@in N+b)] _MDet<ANB+ 1)’ (12) very few r::o many spikes per burst. These signals could be
both periodic and chaotic, being therefore a perfect environ-
where upet is the NSB of the deterministic signal. Making ment to analyze how noise can blur and finally destroy the
use of genetic algorithm techniques, we have obtained thahain properties of a signal. The characteristic period-adding
A=0.42 andB=0.45. The sameexpression obtained by transitions were previously described by Mosekileleal.
least squares fitting, givesA=0.37+0.04 and B [33].
=0.52+0.02.Both fittings show a correlation coefficient By making use of the Lyapunov exponents, we have seen
of r=0.995. We can seé&hat the exponent oN is very that bursts with many spikes are much more robust under
close t00.5. Furthermore, the mathematical fittings for noise than those with few spikes. It should be remarked that
other orbits(P30, P20, andP10) also showB=0.5.There-  bursts with many spikes show negative Lyapunov exponents

VI. CONCLUSIONS
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even for very strong noise. The bursts that appear in real datdonte, Paul M. Diderichsen, Susanna Manrubia, and Sven
are of this type, and this fact makes the task of calculatings6épel for the fruitful talks we have had with them during the
the Lyapunov exponents of experimental recordings verdevelopment of this research. This work has been supported
promising. Furthermore, we show that whidrdecreases all by the Spanish Ministry of Science and Technology under
Lyapunov exponents seem to grow more or less at the sanferoject Nos. BFM2000-0967 and BFM2003-03081 by a
rate, which is an important result because it means that thegcholarship from the Spanish Ministry of Foreign Affaires
will maintain their relation even under strong noise. (2001, and by Universidad Rey Juan Carlos under Project
In the development of this work we have paid specialNos. PGRAL-2001-02, PIGE-02-04, and GCO-2003-16.
attention to the return maps and histograms of interspikd.A. acknowledges support from the Danish Natural Science
time intervals and we have found out that they are fruitfulFoundation.
sources of information. They can be easily obtained from
real data with a very high accuracy, and applying clustering APPENDIX

techniques they have proved to be extraordinarily useful to  The g-cell model studied in this work was first presented
distinguish periodic from aperiodic orbits. Furthermore, wepy Shermaret al. in Ref. [11]. The three differential equa-

have used them to analyze the process of destruction @fons for the deterministic model are the following:
bursts when the cell clusters become very small and the level
of noise reaches very high values. av -

Finally, we have studied the time series of the number of Crn— == gxn(V—=Vyx) = gdcam.(V)h(V)(V = Vo)
spikes in each burst for different types of orbits. In particular, dt
we have explained why the mean of the NSB time series ~ OkeaP(V = Vi), (A1)
decreases wheN decreases for orbits with large number of
spikes per burst, while in the cases in which this number is
small the mean seems to be independeni¥.of dn_ | ny(V)-n

Throughout the paper, we have presented several math- dt V) |
ematical expressions that fit our computational results with a
very high accuracy. The dependence of all magnitudes on the
square root of the number of ceN&l shows the existence of @_f kG A3
a deep relation between the source of the noise and the mem- dt [- alca=keCal, (A3)
brane potential signals. In some sense,rnteroscopicchan-
nel opening and closing processes are intimately connectetfhere
with the macroscopicbehavior of the cell. Furthermore, a
direct consequenceof this fact could be a universal depen- p=
dence of the main characteristics of the membrane potential Ca+Ky
on the size of the cellular cluster. If we suppose that the cellgnd
are located filling up the totality of the islets of Langerhans,
and the islets are taken approximately spherical, we obtain No

that P= Ny + Ng

(A2)

in the deterministic regime,

in the stochastic regime.

N« Vo r30 Cellular propertiess WV o 132, (13) Furthermore

average radius. However, if we suppose that nibeells are Sh (Ad)

located in the surface of the islets, then a better geometrical
approximation could be the following: V-V
h(V) = {1 +ex L

S,

whereV is the volume of the islet of Langerhans ands m(V) = {1 . exp{ Vm—v”-l’
-1
} ; (A5)

Ne Socr20 Cellular propertiesc VSecr,  (14)

whereSis the surface of the islet. In order to cast light on v.-v]1
this subject, the development of the research about the de- n.(V) = {1 + ex;{ n H , (AB)

pendence of the electrical properties of the cells on the ge- S
ometry of the clusters seems to be a promising task.
In summary, it would be of significant interest to apply the { {V— V} { —(v- V) } } -1
tools developed in the present paper to experimental data (V)=clexp) — ( +exp)| —— , (A7)
obtained by patch clamping techniques. This way, we would S, S
be able to obtain valuable information about the behavior of
clusters of pancreati@ cells. o= 1 . (A8)
2VcelF

The parameter that we have been varyinyis. Other pa-
We would like to thank Olga V. Sosnovtseva, Dmitry rameters are the cell volumé.q,=1150um® (cell radius
Postnov, Juan A. Almendral, Francesco d’Ovidio, Silvia deR=6.5 um), the total membrane capacitan€g=5310 fF,
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0k =2500 pSVx=-75 mV, gc;=1400 pS,gyca=30 000 pS, temperature in the Hodgkin-Huxley model and is nondi-
Kyg=100 uM, A=1.7, =0.001, kc,=0.03 ms?t, V=4 mV, mensionalf is the fraction of free calcium in the celk is
Shv=14mV, Vy=-10 mV, §=10mV, V,=-15mV, §,  a unit conversion factor to change current into
=5.6 mV, S,=65mV, S,=20mV, c=60ms, andV=  concentration/timeke, is the net C& removal rate. Fi-
-75 mV.F=96 487 C/mM is the Faraday constagt, gc,  Nnally, n, andn, represent the number of open and closed
andgyc, are the maximal conductancesis similar to the  channels in the stochastic regime.
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