2,374 research outputs found

    Distribution of Oscillator Strengths for Recombination of Localised Excitons in Two Dimensions

    Full text link
    We investigate the distribution of oscillator strengths for the recombination of excitons in a two dimensional sample, trapped in local minima of the confinement potential: the results are derived from a statistical topographic model of the potential. The predicted distribution of oscillator strengths is very different from the Porter-Thomas disribution which usually characterises disordered systems, and is notable for the fact that small oscillator strengths are extremely rare.Comment: Plain TeX, 11 pages, 2 of 3 Postscript figures, to appear in "Chaos, Solitons and Fractals" special issue on Mesoscopic Physics, July 199

    M+D: conceptual guidelines for compiling a materials library

    Get PDF
    This article proposes to present a study conducted by the Raw Materials research group, the results of which comprise the conceptual guidelines for compiling an M+D material library. The study includes the topic, materials and design taking the impact of the changes that came into being in the post industrial era on project methodologies and the search for information regarding materials. Taking into account the importance and complexity that these relationships have taken on currently, we have studied the issue of materials based on Manzini (1983) and Ashby and Johnson (2002). Afterward different databases and materials libraries located in the Brazil, the United States, France and Italy geared toward design professionals and students were analyzed to understand what information and means of access to them were available. The project methodologies were approached based on Löbach (1991), Bürdeck (1994), Schulmann (1994), Baxter (1998), Dantas (1998 and 2005) and Papanek (1995 and 2000). This study sought to identify the key elements of the role of materials in the project process today, to serve as a parameter for the analysis of the models studied. A comparative analysis of the models investigated enabled identification of positive and negative aspects to adapt to the needs previously mentioned and identify conceptual guidelines for compiling a collection of materials for use in design projects. Keywords: Design, Materials, Project Methodology, Library</p

    Packing Returning Secretaries

    Full text link
    We study online secretary problems with returns in combinatorial packing domains with nn candidates that arrive sequentially over time in random order. The goal is to accept a feasible packing of candidates of maximum total value. In the first variant, each candidate arrives exactly twice. All 2n2n arrivals occur in random order. We propose a simple 0.5-competitive algorithm that can be combined with arbitrary approximation algorithms for the packing domain, even when the total value of candidates is a subadditive function. For bipartite matching, we obtain an algorithm with competitive ratio at least 0.5721o(1)0.5721 - o(1) for growing nn, and an algorithm with ratio at least 0.54590.5459 for all n1n \ge 1. We extend all algorithms and ratios to k2k \ge 2 arrivals per candidate. In the second variant, there is a pool of undecided candidates. In each round, a random candidate from the pool arrives. Upon arrival a candidate can be either decided (accept/reject) or postponed (returned into the pool). We mainly focus on minimizing the expected number of postponements when computing an optimal solution. An expected number of Θ(nlogn)\Theta(n \log n) is always sufficient. For matroids, we show that the expected number can be reduced to O(rlog(n/r))O(r \log (n/r)), where rn/2r \le n/2 is the minimum of the ranks of matroid and dual matroid. For bipartite matching, we show a bound of O(rlogn)O(r \log n), where rr is the size of the optimum matching. For general packing, we show a lower bound of Ω(nloglogn)\Omega(n \log \log n), even when the size of the optimum is r=Θ(logn)r = \Theta(\log n).Comment: 23 pages, 5 figure

    The 63^{63}Ni(n,γ\gamma) cross section measured with DANCE

    Get PDF
    The neutron capture cross section of the s-process branch nucleus 63^{63}Ni affects the abundances of other nuclei in its region, especially 63^{63}Cu and 64^{64}Zn. In order to determine the energy dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4π\pi BaF2_2 array DANCE. The (n,γ\gamma) cross section of 63^{63}Ni has been determined relative to the well known 197^{197}Au standard with uncertainties below 15%. Various 63^{63}Ni resonances have been identified based on the Q-value. Furthermore, the s-process sensitivity of the new values was analyzed with the new network calculation tool NETZ.Comment: 11 pages, 13 page

    Which game narratives do adolescents of different gameplay and sociodemographic backgrounds prefer? a mixed-methods analysis

    Get PDF
    OBJECTIVE: The aim of this study was to investigate which narrative elements of digital game narratives are preferred by the general adolescent population, and to examine associations with gender, socioeconomic status (SES), and gameplay frequency. Further, the study aims to discuss how results can be translated to serious digital games. MATERIALS AND METHODS: Adolescents were recruited through school to complete a survey on narrative preferences in digital games. The survey included questions on sociodemographic information, frequency of gameplay, and an open-ended question on what could be an appealing narrative for them. Data were analyzed in a mixed-methods approach, using thematic analysis and chi-square analyses to determine narrative preferences and the associations between game narrative elements and player characteristics (gender, SES, and frequency of gameplay). RESULTS: The sample consisted of 446 adolescents (12-15 years old) who described 30 narrative subthemes. Preferences included human characters as protagonists; nonhuman characters only as antagonists; realistic settings, such as public places or cities; and a strong conflict surrounding crime, catastrophe, or war. Girls more often than boys defined characters by their age, included avatars, located the narrative in private places, developed profession-related skills, and included a positive atmosphere. Adolescents of nonacademic education more often than adolescents of academic education defined characters by criminal actions. Infrequent players more often included human characters defined by their age than frequent players. After performing a Bonferroni correction, narrative preferences for several gender differences remained. CONCLUSION: Different narrative elements related to subgroups of adolescents by gender, SES, and frequency of gameplay. Customization of narratives in serious digital health games should be warranted for boys and girls; yet, further research is needed to specify how to address girls in particular

    Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8+ T cell attack in the CNS gray matter

    Full text link
    Background: Neural-antigen reactive cytotoxic CD8+ T cells contribute to neuronal dysfunction and degeneration in a variety of inflammatory CNS disorders. Facing excess numbers of target cells, CNS-invading CD8+ T cells cause neuronal cell death either via confined release of cytotoxic effector molecules towards neurons, or via spillover of cytotoxic effector molecules from 'leaky’ immunological synapses and non-confined release by CD8+ T cells themselves during serial and simultaneous killing of oligodendrocytes or astrocytes. Methods: Wild-type and T cell receptor transgenic CD8+ T cells were stimulated in vitro, their activation status was assessed by flow cytometry, and supernatant glutamate levels were determined using an enzymatic assay. Expression regulation of molecules involved in vesicular glutamate release was examined by quantitative real-time PCR, and mechanisms of non-vesicular glutamate release were studied by pharmacological blocking experiments. The impact of CD8+ T cell-mediated glutamate liberation on neuronal viability was studied in acute brain slice preparations. Results: Following T cell receptor stimulation, CD8+ T cells acquire the molecular repertoire for vesicular glutamate release: (i) they upregulate expression of glutaminase required to generate glutamate via deamination of glutamine and (ii) they upregulate expression of vesicular proton-ATPase and vesicular glutamate transporters required for filling of vesicles with glutamate. Subsequently, CD8+ T cells release glutamate in a strictly stimulus-dependent manner. Upon repetitive T cell receptor stimulation, CD25high CD8+ T effector cells exhibit higher estimated single cell glutamate release rates than CD25low CD8+ T memory cells. Moreover, glutamate liberation by oligodendrocyte-reactive CD25high CD8+ T effector cells is capable of eliciting collateral excitotoxic cell death of neurons (despite glutamate re-uptake by glia cells and neurons) in intact CNS gray matter. Conclusion: Glutamate release may represent a crucial effector pathway of neural-antigen reactive CD8+ T cells, contributing to excitotoxicity in CNS inflammation.<br

    A Phenomenological Analysis of Non-resonant Charm Meson Decays

    Get PDF
    We analyse the consequences of the usual assumption of a constant function to fit non-resonant decays from experimental Dalitz plot describing charmed meson decays. We first show, using the D+Kˉ0π+π0D^+\to \bar{K}^0\pi^+\pi^0 decay channel as an example, how an inadequate extraction of the non-resonant contribution could yield incorrect measurements for the resonant channels. We analyse how the correct study of this decay will provide a test for the validity of factorization in D meson decays. Finally, we show how form factors could be extracted from non-resonant decays. We particularly discuss about the form factor that can be measured from the Ds+ππ+π+D^+_s\to \pi^-\pi^+\pi^+ decay. We emphasize on its relevance for the study of the decay τντ3π\tau \to \nu_{\tau} 3\pi and the extraction of the a1a_1 meson width.Comment: 14 pages, Latex including 6 eps figure

    Colossal topological Hall effect at the transition between isolated and lattice-phase interfacial skyrmions

    Get PDF
    The topological Hall effect is used extensively to study chiral spin textures in various materials. However, the factors controlling its magnitude in technologically-relevant thin films remain uncertain. Using variable-temperature magnetotransport and real-space magnetic imaging in a series of Ir/Fe/Co/Pt heterostructures, here we report that the chiral spin fluctuations at the phase boundary between isolated skyrmions and a disordered skyrmion lattice result in a power-law enhancement of the topological Hall resistivity by up to three orders of magnitude. Our work reveals the dominant role of skyrmion stability and configuration in determining the magnitude of the topological Hall effect

    On the Dalitz Plot Approach in Non-leptonic Charm Meson Decays

    Get PDF
    We claim that the non-resonant contribution to non-leptonic charm meson decays may not be constant in the phase space of the reaction. We argue that this can be relevant for any weak reaction. We discuss in detail the decay D+Kπ+π+D^+ \to K^- \pi^+ \pi^+.Comment: Version accepted for publication in Physical Review Letters. 9 pages, Latex, including 2 figure

    Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow

    Get PDF
    An optical flow gradient algorithm was applied to spontaneously forming net- works of neurons and glia in culture imaged by fluorescence optical microscopy in order to map functional calcium signaling with single pixel resolution. Optical flow estimates the direction and speed of motion of objects in an image between subsequent frames in a recorded digital sequence of images (i.e. a movie). Computed vector field outputs by the algorithm were able to track the spatiotemporal dynamics of calcium signaling pat- terns. We begin by briefly reviewing the mathematics of the optical flow algorithm, and then describe how to solve for the displacement vectors and how to measure their reliability. We then compare computed flow vectors with manually estimated vectors for the progression of a calcium signal recorded from representative astrocyte cultures. Finally, we applied the algorithm to preparations of primary astrocytes and hippocampal neurons and to the rMC-1 Muller glial cell line in order to illustrate the capability of the algorithm for capturing different types of spatiotemporal calcium activity. We discuss the imaging requirements, parameter selection and threshold selection for reliable measurements, and offer perspectives on uses of the vector data.Comment: 23 pages, 5 figures. Peer reviewed accepted version in press in Annals of Biomedical Engineerin
    corecore