1,420 research outputs found

    Gamifying the Classroom for the Acquisition of Skills Associated with Machine Learning: A Two-Year Case Study

    Get PDF
    Machine learning (ML) is the field of science that combines knowledge from artificial intelligence, statistics and mathematics intending to give computers the ability to learn from data without being explicitly programmed to do so. It falls under the umbrella of Data Science and is usually developed by Computer Engineers becoming what is known as Data Scientists. Developing the necessary competences in this field is not a trivial task, and applying innovative methodologies such as gamification can smooth the initial learning curve. In this context, communities offering platforms for open competitions such as Kaggle can be used as a motivating element. The main objective of this work is to gamify the classroom with the idea of providing students with valuable hands-on experience by means of addressing a real problem, as well as the possibility to cooperate and compete simultaneously to acquire ML competences. The innovative teaching experience carried out during two years meant a great motivation, an improvement of the learning capacity and a continuous recycling of knowledge to which Computer Engineers are faced to

    Petrographic study and possible sources of the San Cayetano formation basal clasts to the south of the San Jacinto fold belt, north of Colombia

    Get PDF
    Se considera que los clastos basales de la Formación San Cayetano en el Cinturón Plegado de San Jacinto (CPSJ) evidencian parte de los eventos tectónicos asociados a la interacción de la margen de Sur América con un arco magmático intraoceánico de la Placa Caribe. Dichos clastos provienen del desmantelamiento de un arco intra-oceánico (88-73 Ma), y de la acreción de éste arco al margen continental suramericano; por lo que aportan al entendimiento de la tectónica post-colisional del Caribe Sur. Este estudio está enfocado en el análisis de la diversidad litológica de los clastos en los niveles conglomeráticos basales de la Formación San Cayetano, con el objeto de establecer su fuente y apoyar su procedencia respecto a la configuración de los antiguos sistemas magmáticos existentes en el Caribe colombiano. Los clastos basales al Sur del Alto de Magangué contienen clastos ígneos de afinidad máfica (basaltos con y sin vacuolas, y gabros) y clastos metamórficos (serpentinitas, ortogneis y anfibolitas) de un protolito ultramáfico-máfico. Los clastos de la Formación San Cayetano (Paleógeno Inferior) están relacionados tectónicamente con un ambiente de Arco, que evidencian rápida erosión y un mínimo efecto de transporte (No Disectado a Disectado); por lo que, dichos clastos provienen de fuentes próximas al CPSJ, con una configuración tectónica similar al actual margen NW del Caribe colombiano.It is considered that the basal clasts of the San Cayetano Formation in the San Jacinto Fold Belt (CPSJ) reveal part of the tectonic events related to the South American margin interaction with an intraoceanic magmatic arc of the Caribbean Plate. These clasts come from an intra-oceanic arch dismantling (88-73 Ma), and from arch accretion to the South American continental margin; therefore they contribute to the South Caribbean post-collisional tectonics understanding. This study is focused on clasts lithological diversity analysis in the San Cayetano Formation basal conglomerate levels, in order to establish its source and support its origin respecting to old magmatic systems configuration existing in the Colombian Caribbean. The basal clasts at the south of Magangué High contain mafic affinity igneous clasts (basalts with and without vacuoles, and gabros) and metamorphic clasts (serpentinites, ortogneis and amphibolites) of an ultramafic-mafic protolith. The San Cayetano Formation clasts (Lower Paleogene) are tectonically related to an Arc environment, revealing rapid erosion and a minimal transport effect (Not Dissected to Dissected); therefore, these clasts come from sources close to the CPSJ, with a similar tectonic configuration to the current NW Colombian Caribbean margin.&nbsp

    One month in advance prediction of air temperature from Reanalysis data with eXplainable Artificial Intelligence techniques

    Get PDF
    In this paper we have tackled the problem of long-term air temperature prediction with eXplainable Artificial Intelligence (XAI) models. Specifically, we have evaluated the performance of an Artificial Neural Network (ANN) architecture with sigmoidal neurons in the hidden layer, trained by means of an evolutionary algorithm (Evolutionary ANNs, EANNs). This XAI model architecture (XAI-EANN) has been applied to the long-term air temperature prediction at different sub-regions of the South of the Iberian Peninsula. In this case, the average August air temperature has been predicted from ERA5 Reanalysis data variables, obtaining good predictions skills and explainable models in terms of the input climatological variables considered. A cluster analysis has been first carried out in terms of the average air temperature in the zone, in such a way that a number of sub-regions with different air temperature behaviour have been defined. The proposed XAI-EANN model architecture has been applied to each of the defined sub-regions, in order to find significant differences among them, which can be explained with the XAI-EANN models obtained. Finally, a comprehensive comparison against some state-of-the-art techniques has also been carried out, concluding that there are statistically significant differences in terms of accuracy in favour of the proposed XAI-EANN model, which also benefits from being an XAI model

    Empowering the Data Scientist professional profile through competition dynamics

    Get PDF
    La Ciencia de Datos es el área que comprende el desarrollo de métodos científicos, procesos y sistemas para extraer conocimiento a partir de datos recopilados previamente, con el objetivo de analizar los procedimientos llevados a cabo actualmente. El perfil profesional asociado a este campo es el del Científico de Datos, generalmente llevado a cabo por Ingenieros Informáticos gracias a que las aptitudes y competencias adquiridas durante su formación se ajustan perfectamente a lo requerido en este puesto laboral. Debido a la necesidad de formación de nuevos Científicos de Datos, entre otros fines, surgen plataformas en las que éstos pueden adquirir una amplia experiencia, como es el caso de Kaggle. El principal objetivo de esta experiencia docente es proporcionar al alumnado una experiencia práctica con un problema real, así como la posibilidad de cooperar y competir al mismo tiempo. Así, la adquisición y el desarrollo de las competencias necesarias en Ciencia de Datos se realiza en un entorno altamente motivador. La realización de actividades relacionadas con este perfil ha tenido una repercusión directa sobre el alumnado, siendo fundamental la motivación, la capacidad de aprendizaje y el reciclaje continuo de conocimientos a los que se someten los Ingenieros Informáticos.Data Science is the area that comprises the development of scientific methods, processes, and systems for extracting knowledge from previously collected data, aiming to analyse the procedures being carried out currently. The professional profile associated with this field is the Data Scientist, generally carried out by Computer Engineers as the skills and competencies acquired during their training are perfectly suited to what this job requires. Due to the need for training new Data Scientists, among other goals, there are different emerging platforms where they can acquire extensive experience, such as Kaggle. The main objective of this teaching experience is to provide students with practical experience on a real problem, as well as the possibility of cooperating and competing at the same time. Thus, the acquisition and development of the necessary competencies in Data Science are carried out in a highly motivating environment. The development of activities related to this profile has had a direct impact on the students, being fundamental the motivation, the learning capacity and the continuous recycling of knowledge to which Computer Engineers are subjected

    HGF, IL-1α, and IL-27 Are Robust Biomarkers in Early Severity Stratification of COVID-19 Patients

    Get PDF
    Producción CientíficaPneumonia is the leading cause of hospital admission and mortality in coronavirus disease 2019 (COVID-19). We aimed to identify the cytokines responsible for lung damage and mortality. We prospectively recruited 108 COVID-19 patients between March and April 2020 and divided them into four groups according to the severity of respiratory symptoms. Twenty-eight healthy volunteers were used for normalization of the results. Multiple cytokines showed statistically significant differences between mild and critical patients. High HGF levels were associated with the critical group (OR = 3.51; p < 0.001; 95%CI = 1.95–6.33). Moreover, high IL-1α (OR = 1.36; p = 0.01; 95%CI = 1.07–1.73) and low IL-27 (OR = 0.58; p < 0.005; 95%CI = 0.39–0.85) greatly increased the risk of ending up in the severe group. This model was especially sensitive in order to predict critical status (AUC = 0.794; specificity = 69.74%; sensitivity = 81.25%). Furthermore, high levels of HGF and IL-1α showed significant results in the survival analysis (p = 0.033 and p = 0.011, respectively). HGF, IL-1α, and IL 27 at hospital admission were strongly associated with severe/critical COVID-19 patients and therefore are excellent predictors of bad prognosis. HGF and IL-1α were also mortality biomarkers.Instituto de Salud Carlos III (grant COV20/00491

    Incidence of Changes in Electoral Competence Rules on the Nationalization of Party Systems: The Strategies of Political Actors in Antioquia, 1997-2011

    Get PDF
    RESUMEN: En este artículo se sostiene que la nacionalización vertical del sistema de partidos es afectada por la forma como los partidos y candidatos adoptanestrategias para seguir en competencia bajo un marco normativo dado, pues las reglas electorales ofrecen diferentes incentivos para que estos coordinen (o no) sus esfuerzos entre los diferentes niveles electorales. Para ello, a partir de la información de las elecciones de Concejo, Asamblea y Cámara en Antioquia entre 1997 y 2011 se encuentra que los cambios en las reglas electorales de 2003 y su efecto sobre la forma en que los políticos se organizan para la competencia son un factor que afecta la nacionalización vertical del sistema de partidos, haciendo que la competencia a nivel municipal se aparte de la regional y nacional.ABSTRACT: In this article it is argued that vertical nationalization of the party system is affected by the way in which parties and candidates adopt strategies to remain in competition under a given set of rules, since electoral rules offer different incentives for them to coordinate (or not) their efforts among the different electoral levels. For this purpose, based on information from the elections for Council, Assembly and Chamber in Antioquia between 1997 and 2011, it was found that the changes in electoral rules in 2003 and their effect on the way in which politicians organize themselves for elections are a factor that affects vertical nationalization of the party system, distancing the competition on the municipal level from that which takes place on the regional and national levels

    Evaluation of cytokines as robust diagnostic biomarkers for COVID-19 detection

    Get PDF
    Producción CientíficaAntigen tests or polymerase chain reaction (PCR) amplification are currently COVID-19 diagnostic tools. However, developing complementary diagnosis tools is mandatory. Thus, we performed a plasma cytokine array in COVID-19 patients to identify novel diagnostic biomarkers. A discovery–validation study in two independent prospective cohorts was performed. The discovery cohort included 136 COVID-19 and non-COVID-19 patients recruited consecutively from 24 March to 11 April 2020. Forty-five cytokines’ quantification by the MAGPIX system (Luminex Corp., Austin, TX, USA) was performed in plasma samples. The validation cohort included 117 patients recruited consecutively from 15 to 25 April 2020 for validating results by ELISA. COVID-19 patients showed different levels of multiple cytokines compared to non-COVID-19 patients. A single chemokine, IP-10, accurately identified COVID-19 patients who required hospital admission (AUC: 0.962; 95%CI (0.933–0.992); p < 0.001)). The results were validated in an independent cohort by multivariable analysis (OR: 25.573; 95%CI (8.127–80.469); p < 0.001) and AUROC (AUC: 0.900; 95%CI (0.846–0.954); p < 0.001). Moreover, showing IP-10 plasma levels over 173.35 pg/mL identified COVID-19 with higher sensitivity (86.20%) than the first SARS-CoV-2 PCR. Our discover–validation study identified IP-10 as a robust biomarker in clinical practice for COVID-19 diagnosis at hospital. Therefore, IP-10 could be used as a complementary tool in clinical practice, especially in emergency departments.Instituto de Salud Carlos III (grant COV20/00491)Consejo Superior de Investigaciones científicas (grant CSIC-COV19-016/202020E155)Junta de Castilla y León (project COVID 07.04.467B04.74011.0)IBGM excellence programme (grant CLU-2029-02

    Cuál es tu opinión. Conferencia sobre la Profesión de Ingeniero de Montes

    Get PDF
    Producción CientíficaDesde el Colegio se está organizando la Conferencia sobre la Profesión de Ingeniero de Montes, a celebrar a lo largo de dos jornadas en el mes de enero de 2016, con el objetivo de debatir y extraer conclusiones para iniciar actuaciones en relación con la situación actual de los estudios y títulos por un lado, y con el desarrollo de la profesión en el futuro por otro. Actualmente se está produciendo una reorganización de la formación universitaria y de la regulación del ejercicio profesional. Por este motivo sería interesante reflexionar sobre temas como los nuevos títulos de Grado y Máster Ingeniero de Montes, y los cambios en el marco legislativo que regula la actividad de la profesión.[Texto extraído del artículo de Joaquín Navarro Hevia]
    corecore