44 research outputs found

    Evidence for sinistral strike-slip deformation in the Solomon Island arc

    Get PDF
    6 pages, 4 figuresDuring the SOPACMAPS 2 crusie carried out by IFREMER (Institut Français de Recherche pour l'Exploitation de la Mer) and ORSTOM (Institut Français de Recherche Scientifique pour le dévelopement en Coopération) on theR/V L'Atalante, in the Central Solomon Arc area, multibeam bathymetric and imagery data and single-channel seismic reflection profiles were collected from an area of about 3500 km2, to evaluate regional tectonics. Structural data geophysical profiles interpretation provide evidence for left-lateral transtensional tectonics on the southern edge of the Central Solomon Trough. This transtensional deformation is represented by faulting, block tilting, and rhombohedral deformation. The regional geology and the analysis of the sedimentary cover allow us to demonstrate that this tectonic occurred in two different phases during Oligocene to Miocene and Pliocene to Pleistocene timesPeer reviewe

    Gas emissions and active tectonics within the submerged section of the North Anatolian Fault zone in the Sea of Marmara

    Get PDF
    The submerged section of the North Anatolian fault within the Marmara Sea was investigated using acoustic techniques and submersible dives. Most gas emissions in the water column were found near the surface expression of known active faults. Gas emissions are unevenly distributed. The linear fault segment crossing the Central High and forming a seismic gap – as it has not ruptured since 1766, based on historical seismicity, exhibits relatively less gas emissions than the adjacent segments. In the eastern Sea of Marmara, active gas emissions are also found above a buried transtensional fault zone, which displayed micro-seismic activity after the 1999 events. Remarkably, this zone of gas emission extends westward all along the southern edge of Cinarcik basin, well beyond the zone where 1999 aftershocks were observed. The long term monitoring of gas seeps could hence be highly valuable for the understanding of the evolution of the fluid-fault coupling processes during the earthquake cycle within the Marmara Sea

    Gas seepage and seismogenic structures along the North Anatolian Fault in the eastern Sea of Marmara

    Get PDF
    We carried out a combined geophysical and gas-geochemical survey on an active fault strand along the North Anatolian Fault (NAF) system in the Gulf of Ä°zmit (eastern Sea of Marmara), providing for the first time in this area data on the distribution of methane (CH4) and other gases dissolved in the bottom seawater, as well as the CH4isotopic composition. Based on high-resolution morphobathymetric data and chirp-sonar seismic reflection profiles we selected three areas with different tectonic features associated to the NAF system, where we performed visual and instrumental seafloor inspections, including in situ measurements of dissolved CH4, and sampling of the bottom water. Starting from background values of 2–10 nM, methane concentration in the bottom seawater increases abruptly up to 20 nM over the main NAF trace. CH4 concentration peaks up to ∌120 nM were detected above mounds related probably to gas and fluids expulsion. Methane is microbial (ÎŽ13CCH4: −67.3 and −76‰ versus VPDB), and was found mainly associated with pre-Holocene deposits topped by a 10–20 m thick draping of marine mud. The correlation between tectonic structures and gas-seepages at the seafloor suggests that the NAF in the Gulf of Ä°zmit could represent a key site for long-term combined monitoring of fluid exhalations and seismicity to assess their potential as earthquake precursors

    Quantification of group A colicin import sites.

    No full text
    International audiencePore-forming colicins are soluble bacteriocins which form voltage-gated ion channels in the inner membrane of Escherichia coli. To reach their target, these colicins first bind to a receptor located on the outer membrane and then are translocated through the envelope. Colicins are subdivided into two groups according to the envelope proteins involved in their translocation: group A colicins use the Tol proteins; group B colicins use the proteins TonB, ExbB, and ExbD. We have previously shown that a double-cysteine colicin A mutant which possesses a disulfide bond in its pore-forming domain is translocated through the envelope but is unable to form a channel in the inner membrane (D. Duché, D. Baty, M. Chartier, and L. Letellier, J. Biol. Chem. 269:24820-24825, 1994). Measurements of colicin-induced K+ efflux reveal that preincubation of the cells with the double-cysteine mutant prevents binding of colicins of group A but not of group B. Moreover, we show that the mutant is still in contact with its receptor and import machinery when it interacts with the inner membrane. From these competition experiments, we conclude that each Escherichia coli cell contains approximately 400 and 1,000 colicin A receptors and translocation sites, respectively

    Evidence for methane isotopic bond re-ordering in gas reservoirs sourcing cold seeps from the Sea of Marmara

    No full text
    International audienceThe measurement of methane clumped isotopologues (Δ 13 CH3D and Δ 12 CH2D2) allows exploring isotope bond ordering within methane molecules, and may reveal equilibrium temperatures. Whether such temperature reflects the formation or re-equilibration temperature of the methane is not well understood, but would have critical implications for the use of methane clumped isotopologues as geothermometers. Here we investigate gas bubbles from vigorous emissions at cold seeps (n = 14) in the Sea of Marmara, Turkey. These cold seeps are sourced from deeper sedimentary reservoirs. Conventional geochemical tracers such as carbon and hydrogen bulk isotopic ratios (13 C/ 12 C and D/H) or n-alkane molecular ratios, suggest these gases reflect various degrees of mixing between thermogenic and microbial sources. Some samples would generally be considered purely microbial in origin (C1/C2+ > 1500; ή 13 C <-60 ‰). We report measurements of Δ 13 CH3D and Δ 12 CH2D2 showing that a fraction of those gases are in internal thermodynamic equilibrium, with the abundances of the two mass-18 isotopologues indicating concordant temperatures of ~90 °C and ~130 °C. These concordant temperatures are recorded by gases of putative microbial and thermogenic origin; the temperatures of equilibration are irrespective of the formation mechanism of the gases. We conclude that the two high-temperatures recorded by Δ 13 CH3D and 1 *Manuscript Click here to view linked References Δ 12 CH2D2 are best explained by non-enzymatic re-equilibration at two local subsurface temperatures. First principles suggest that unequal rates of exchange is possible. Disequilibrium signatures where the two isotopologues yield discordant apparent temperatures are exhibited by other samples. In those cases the data define a trend of variable D 13 CH3D at nearly constant D 12 CH2D2. These signatures are enigmatic, and we investigate and reject multiple possible explanations including mixing, diffusion or Anaerobic Oxidation of Methane. Different rates of re-equilibration between the two rare isotopologues is implied, although lacks experimental foundation at present. In general, all of these data point towards reequilibration of the mass-18 methane isotopologues as an important process
    corecore