171 research outputs found

    Characterization of transgene expression and pDNA distribution of the suctioned kidney in mice

    Get PDF
    We have previously developed an efficient and safe transfection method for the kidney in mice: renal suction-mediated transfection. In this study, we verified the detailed characteristics of transgene expression and plasmid DNA (pDNA) in mice to develop therapeutic strategies and application to gene function analysis in the kidney. After naked pDNA was administered intravenously, the right kidney was immediately suctioned by a tissue suction device. We examined the spatial distribution of transgene expression and pDNA in the suctioned kidney using tissue clearing by CUBIC, ClearT2, and Scale SQ reagents. Spatial distribution analysis showed that pDNA was transfected into extravascular cells and sufficiently delivered to the deep renal cortex. In addition, we revealed that transgene expression occurred mainly in peritubular fibroblasts of the suctioned kidney by tissue clearing and immunohistochemistry. Next, we confirmed the periods of pDNA uptake and activation of transcription factors nuclear factor-κB and activator protein 1 by luciferase assays. Moreover, the use of a pCpG-free plasmid enabled sustained transgene expression in the suctioned kidney. In conclusion, analyses of the spatial distribution and immunostaining of the section suggest that pDNA and transgene expression occurs mainly in peritubular fibroblasts of the suctioned kidney. In addition, we clarified some factors for efficient and/or sustained transgene expression in the suctioned kidney

    Delivery advantage to the unilateral kidney by direct drug application to the kidney surface in rats and pharmacokinetic verification based on a physiological model

    Get PDF
    The objective of this study was to evaluate the drug delivery advantage to the unilateral kidney by direct drug application to the rat kidney surface based on a physiological pharmacokinetic model. Under anesthesia, a cylindrical diffusion cell (i.d. 6 mm, area 0.28 cm(2)) was attached to the right kidney surface in rats. Phenolsulfonphthalein (PSP), an organic anion chosen as a model compound, was added into the diffusion cell. The free PSP concentration in the right (applied) kidney after application to the right kidney surface at a dose of 1 mg was significantly higher than that of the left (non-applied) kidney until 60 min after application. Similarly, the urinary excretion rate of free PSP from the applied kidney was much faster than that from the non-applied kidney, with a 2.6 times larger excreted amount in 240 min. These results imply the possibility that a considerable drug delivery advantage to the unilateral kidney could be obtained after direct absorption from the kidney surface. This tendency was also observed at the other application doses of 0.3 and 1.5 mg. On the other hand, fluorescein isothiocyanate dextran (Mw 4400, FD-4) was equally excreted into the urine from each kidney and the renal concentrations in the applied and non-applied kidneys were almost the same, possibly due to the involvement of passive transport for the absorbed FD-4, i.e. glomerular filtration. The computer simulations of free PSP concentrations in the plasma and each kidney based on a physiological model after kidney surface application were consistent with the respective experimental data. Moreover, the delivery advantage of kidney surface application of PSP was verified by its comparison with other routes such as i.v. and i.a. administrations

    Lessons from using iPads to understand young children's creativity

    Get PDF
    This paper explores how iPads can be used as part of a child-centred data collection approach to understanding young children’s creativity. Evidence is presented from a pilot study about 3- to 5-year-old children’s creative play. Researchers’ reflective accounts of children’s engagement with iPad video diaries and free to use apps were logged across two early educational settings over a three-month period. Findings suggest that iPads offer a mechanism to allow children to express their creative play and to encourage involvement in the research process. However, bespoke research software to use with early years children is required to improve this process

    Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment available. An increasing number of genetic causes of ALS are being identified, but how these genetic defects lead to motor neuron degeneration and to which extent they affect common cellular pathways remains incompletely understood. To address these questions, we performed an interactomic analysis to identify binding partners of wild-type (WT) and ALS-associated mutant versions of ATXN2, C9orf72, FUS, OPTN, TDP-43 and UBQLN2 in neuronal cells. This analysis identified several known but also many novel binding partners of these proteins. Interactomes of WT and mutant ALS proteins were very similar except for OPTN and UBQLN2, in which mutations caused loss or gain of protein interactions. Several of the identified interactomes showed a high degree of overlap: shared binding partners of ATXN2, FUS and TDP-43 had roles in RNA metabolism; OPTN- and UBQLN2-interacting proteins were related to protein degradation and protein transport, and C9orf72 interactors function in mitochondria. To conf

    BicaudalD Actively Regulates Microtubule Motor Activity in Lipid Droplet Transport

    Get PDF
    A great deal of sub-cellular organelle positioning, and essentially all minus-ended organelle transport, depends on cytoplasmic dynein, but how dynein's function is regulated is not well understood. BicD is established to play a critical role in mediating dynein function-loss of BicD results in improperly localized nuclei, mRNA particles, and a dispersed Golgi apparatus-however exactly what BicD's role is remains unknown. Nonetheless, it is widely believed that BicD may act to tether dynein to cargos. Here we use a combination of biophysical and biochemical studies to investigate BicD's role in lipid droplet transport during Drosophila embryogenesis.Functional loss of BicD impairs the embryo's ability to control the net direction of droplet transport; the developmentally controlled reversal in transport is eliminated. We find that minimal BicD expression (near-BicD(null)) decreases the average run length of both plus and minus end directed microtubule (MT) based transport. A point mutation affecting the BicD N-terminus has very similar effects on transport during cellularization (phase II), but in phase III (gastrulation) motion actually appears better than in the wild-type.In contrast to a simple static tethering model of BicD function, or a role only in initial dynein recruitment to the cargo, our data uncovers a new dynamic role for BicD in actively regulating transport. Lipid droplets move bi-directionally, and our investigations demonstrate that BicD plays a critical-and temporally changing-role in balancing the relative contributions of plus-end and minus-end motors to control the net direction of transport. Our results suggest that while BicD might contribute to recruitment of dynein to the cargo it is not absolutely required for such dynein localization, and it clearly contributes to regulation, helping activation/inactivation of the motors

    GSK3β phosphorylation modulates CLASP–microtubule association and lamella microtubule attachment

    Get PDF
    Polarity of the microtubule (MT) cytoskeleton is essential for many cell functions. Cytoplasmic linker–associated proteins (CLASPs) are MT-associated proteins thought to organize intracellular MTs and display a unique spatiotemporal regulation. In migrating epithelial cells, CLASPs track MT plus ends in the cell body but bind along MTs in the lamella. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) directly phosphorylates CLASPs at multiple sites in the domain required for MT plus end tracking. Although complete phosphorylation disrupts both plus end tracking and association along lamella MTs, we show that partial phosphorylation of the identified GSK3β motifs determines whether CLASPs track plus ends or associate along MTs. In addition, we find that expression of constitutively active GSK3β destabilizes lamella MTs by disrupting lateral MT interactions with the cell cortex. GSK3β-induced lamella MT destabilization was partially rescued by expression of CLASP2 with mutated phosphorylation sites. This indicates that CLASP-mediated stabilization of peripheral MTs, which likely occurs in the vicinity of focal adhesions, may be regulated by local GSK3β inactivation

    A robust method for estimating gene expression states using Affymetrix microarray probe level data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray technology is a high-throughput method for measuring the expression levels of thousand of genes simultaneously. The observed intensities combine a non-specific binding, which is a major disadvantage with microarray data. The Affymetrix GeneChip assigned a mismatch (MM) probe with the intention of measuring non-specific binding, but various opinions exist regarding usefulness of MM measures. It should be noted that not all observed intensities are associated with expressed genes and many of those are associated with unexpressed genes, of which measured values express mere noise due to non-specific binding, cross-hybridization, or stray signals. The implicit assumption that all genes are expressed leads to poor performance of microarray data analyses. We assume two functional states of a gene - expressed or unexpressed - and propose a robust method to estimate gene expression states using an order relationship between PM and MM measures.</p> <p>Results</p> <p>An indicator 'probability of a gene being expressed' was obtained using the number of probe pairs within a probe set where the PM measure exceeds the MM measure. We examined the validity of the proposed indicator using Human Genome U95 data sets provided by Affymetrix. The usefulness of 'probability of a gene being expressed' is illustrated through an exploration of candidate genes involved in neuroblastoma prognosis. We identified the candidate genes for which expression states differed (un-expressed or expressed) when compared between two outcomes. The validity of this result was subsequently confirmed by quantitative RT-PCR.</p> <p>Conclusion</p> <p>The proposed qualitative evaluation, 'probability of a gene being expressed', is a useful indicator for improving microarray data analysis. It is useful to reduce the number of false discoveries. Expression states - expressed or unexpressed - correspond to the most fundamental gene function 'On' and 'Off', which can lead to biologically meaningful results.</p

    Early childhood pedagogies: spaces for young children to flourish

    Get PDF
    This paper introduces the Special Issue of Early Child Development and Care focused on Early Childhood Pedagogy. It opens by considering past and present discourses concerning early childhood pedagogy, and focus is given to established philosophical underpinnings in the field and their translation to contemporary guidance, alongside research and policy. It is argued that early childhood pedagogy is a contested, complex and diverse space, yet these factors are entirely appropriate for supporting young children to flourish as valued individuals in different contexts. Building on this argument, it is posited that it may be more appropriate to discuss early childhood pedagogies rather than early childhood pedagogy. The paper goes on to critique a range of established early childhood pedagogies, before introducing 18 papers from across the world that make exciting new contributions to the discourse. It is intended that this collection will inspire new debates and fresh endeavours concerning early childhood pedagogies

    Cell Cycle-Dependent Microtubule-Based Dynamic Transport of Cytoplasmic Dynein in Mammalian Cells

    Get PDF
    BACKGROUND:Cytoplasmic dynein complex is a large multi-subunit microtubule (MT)-associated molecular motor involved in various cellular functions including organelle positioning, vesicle transport and cell division. However, regulatory mechanism of the cell-cycle dependent distribution of dynein has not fully been understood. METHODOLOGY/PRINCIPAL FINDINGS:Here we report live-cell imaging of cytoplasmic dynein in HeLa cells, by expressing multifunctional green fluorescent protein (mfGFP)-tagged 74-kDa intermediate chain (IC74). IC74-mfGFP was successfully incorporated into functional dynein complex. In interphase, dynein moved bi-directionally along with MTs, which might carry cargos such as transport vesicles. A substantial fraction of dynein moved toward cell periphery together with EB1, a member of MT plus end-tracking proteins (+TIPs), suggesting +TIPs-mediated transport of dynein. In late-interphase and prophase, dynein was localized at the centrosomes and the radial MT array. In prometaphase and metaphase, dynein was localized at spindle MTs where it frequently moved from spindle poles toward chromosomes or cell cortex. +TIPs may be involved in the transport of spindle dyneins. Possible kinetochore and cortical dyneins were also observed. CONCLUSIONS AND SIGNIFICANCE:These findings suggest that cytoplasmic dynein is transported to the site of action in preparation for the following cellular events, primarily by the MT-based transport. The MT-based transport may have greater advantage than simple diffusion of soluble dynein in rapid and efficient transport of the limited concentration of the protein
    corecore