71 research outputs found

    Chemotactic synthetic vesicles: Design and applications in blood-brain barrier crossing

    Get PDF
    In recent years, scientists have created artificial microscopic and nanoscopic self-propelling particles, often referred to as nano- or microswimmers, capable of mimicking biological locomotion and taxis. This active diffusion enables the engineering of complex operations that so far have not been possible at the micro- and nanoscale. One of the most promising tasks is the ability to engineer nanocarriers that can autonomously navigate within tissues and organs, accessing nearly every site of the human body guided by endogenous chemical gradients. We report a fully synthetic, organic, nanoscopic system that exhibits attractive chemotaxis driven by enzymatic conversion of glucose. We achieve this by encapsulating glucose oxidase alone or in combination with catalase into nanoscopic and biocompatible asymmetric polymer vesicles (known as polymersomes). We show that these vesicles self-propel in response to an external gradient of glucose by inducing a slip velocity on their surface, which makes them move in an extremely sensitive way toward higher-concentration regions. We finally demonstrate that the chemotactic behavior of these nanoswimmers, in combination with LRP-1 (low-density lipoprotein receptor–related protein 1) targeting, enables a fourfold increase in penetration to the brain compared to nonchemotactic systems

    Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring

    Get PDF
    Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS) are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2), which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM) in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity.Michelle Lane, Nicole O. McPherson, Tod Fullston, Marni Spillane, Lauren Sandeman, Wan Xian Kang, Deirdre L. Zander-Fo

    X-Linked lissencephaly with absent corpus callosum and abnormal genitalia: an evolving multisystem syndrome with severe congenital intestinal diarrhea disease

    Get PDF
    X-linked lissencephaly with abnormal genitalia is a rare and devastating syndrome. The authors present an infant with a multisystem phenotype where the intestinal manifestations were as life limiting as the central nervous system features. Severe chronic diarrhea resulted in failure to thrive, dehydration, electrolyte derangements, long-term hospitalization, and prompted transition to palliative care. Other multisystem manifestations included megacolon, colitis, pancreatic insufficiency hypothalamic dysfunction, hypothyroidism, and hypophosphatasia. A novel aristaless-related homeobox gene mutation, c.1136G>T/p.R379L, was identified. This case contributes to the clinical, histological, and molecular understanding of the multisystem nature of this disorder, especially the role of ARX in the development of the enteroendocrine system.David Coman, Tom Fullston, Cheryl Shoubridge, Richard Leventer, Flora Wong, Simon Nazaretian, Ian Simpson, Josef Gecz, and George McGillivra

    Parental diet, pregnancy outcomes and offspring health:metabolic determinants in developing oocytes and embryos

    Get PDF
    The periconceptional period, embracing the terminal stages of oocyte growth and post-fertilisation development up to implantation, is sensitive to parental nutrition. Deficiencies or excesses in a range of macro- and micronutrients during this period can lead to impairments in fertility, fetal development and long-term offspring health. Obesity and genotype-related differences in regional adiposity are associated with impaired liver function and insulin resistance, and contribute to fatty acid-mediated impairments in sperm viability and oocyte and embryo quality, all of which are associated with endoplasmic reticulum stress and compromised fertility. Disturbances to maternal protein metabolism can elevate ammonium concentrations in reproductive tissues and disturb embryo and fetal development. Associated with this are disturbances to one-carbon metabolism, which can lead to epigenetic modifications to DNA and associated proteins in offspring that are both insulin resistant and hypertensive. Many enzymes involved in epigenetic gene regulation use metabolic cosubstrates (e.g. acetyl CoA and S-adenosyl methionine) to modify DNA and associated proteins, and so act as 'metabolic sensors' providing a link between parental nutritional status and gene regulation. Separate to their genomic contribution, spermatozoa can also influence embryo development via direct interactions with the egg and by seminal plasma components that act on oviductal and uterine tissues

    Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health

    Full text link

    Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences

    Get PDF
    Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise concerns that analgesic use in pregnancy could potentially affect fertility of resulting daughters and grand-daughters

    Small footprint aluminosilicate matrix: refractory hybrid materials

    No full text
    This study investigates the effects of alumina, titania, boron nitride and silicon carbide additions on low energy (typical cure < 90oC) alkali reactive aluminosilicate matrix material properties as potential small environmental footprint refractory materials. The structure - property relationships of the aluminosilicate matrix - refractory hybrid materials were characterized for thermal performance. Electron microscopy complemented with X-ray diffraction and FTIR revealed the different reaction mechanisms occurring within the hybrid aluminosilicate matrix - refractory systems. Alumina and silicon carbide additions were found to react with the aluminosilicate matrix to a greater extent than boron nitride and titania. Thermogravimetric and differential thermal analysis indicate that thermal behaviour is predominantly dictated by water loss from the aluminosilicate matrix, with refractory additions playing a minor role. The reactivity of the refractory addition towards the aluminosilicate matrix influenced sample microstructure and thermal performance
    • …
    corecore