281 research outputs found

    Two distinct halo populations in the solar neighborhood. Evidence from stellar abundance ratios and kinematics

    Full text link
    Precise abundance ratios are determined for 94 dwarf stars with 5200 < Teff < 6300 K, -1.6 < [Fe/H] < -0.4, and distances D < 335 pc. Most of them have halo kinematics, but 16 thick-disk stars are included. Equivalent widths of atomic lines are measured from VLT/UVES and NOT/FIES spectra with resolutions R = 55000 and R = 40000, respectively. An LTE abundance analysis based on MARCS models is applied to derive precise differential abundance ratios of Na, Mg, Si, Ca, Ti, Cr, and Ni with respect to Fe. The halo stars fall into two populations, clearly separated in [alpha/Fe], where alpha refers to the average abundance of Mg, Si, Ca, and Ti. Differences in [Na/Fe] and [Ni/Fe] are also present with a remarkably clear correlation between these two abundance ratios. The `high-alpha' stars may be ancient disk or bulge stars `heated' to halo kinematics by merging satellite galaxies or they could have formed as the first stars during the collapse of a proto-Galactic gas cloud. The kinematics of the `low-alpha' stars suggest that they have been accreted from dwarf galaxies, and that some of them may originate from the omega Cen progenitor galaxy.Comment: Accepted for publication in A&A as a four-page Letter with five pages of online materia

    Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. Detailed abundance analysis of OGLE-2008-BLG-209S

    Get PDF
    AIMS. Our aims are twofold. First we aim to evaluate the robustness and accuracy of stellar parameters and detailed elemental abundances that can be derived from high-resolution spectroscopic observations of microlensed dwarf and subgiant stars. We then aim to use microlensed dwarf and subgiant stars to investigate the abundance structure and chemical evolution of the Milky Way Bulge. [ABRIDGED] METHODS. We present a detailed elemental abundance analysis of OGLE-2008-BLG-209S, the source star of a new microlensing event towards the Bulge, for which we obtained a high-resolution spectrum with the MIKE spectrograph on the Magellan Clay telescope. We have performed four different analyses of OGLE-2008-BLG-209S. [ABRIDGED] We have also re-analysed three previous microlensed dwarf stars OGLE-2006-BLG-265S, MOA-2006-BLG-099S, and OGLE-2007-BLG-349S with the same method. This homogeneous data set, although small, enables a direct comparison between the different stellar populations. RESULTS. We find that OGLE-2008-BLG-209S is a subgiant star that has a metallicity of [Fe/H] ~-0.33. It possesses [alpha/Fe] enhancements similar to what is found for Bulge giant stars at the same metallicity, and what also is found for nearby thick disc stars at the same metallicity. In contrast, the previous three microlensing dwarf stars have very high metallicities, [Fe/H]>+0.4, and more solar-like abundance ratios, i.e. [alpha/Fe]~0. The decrease in the [alpha/Fe] ratio with [Fe/H] is the typical signature of enrichment from low and intermediate mass stars. We furthermore find that the results for the four Bulge stars, in combination with results from studies of giant stars in the Bulge, seem to favour a secular formation scenario for the Bulge.Comment: Accepted for publication in A&A, 17 pages, online table will be available in published version, or by contacting the first autho

    The RAVE Survey: Constraining the Local Galactic Escape Speed

    Get PDF
    We report new constraints on the local escape speed of our Galaxy. Our analysis is based on a sample of high velocity stars from the RAVE survey and two previously published datasets. We use cosmological simulations of disk galaxy formation to motivate our assumptions on the shape of the velocity distribution, allowing for a significantly more precise measurement of the escape velocity compared to previous studies. We find that the escape velocity lies within the range 498\kms < \ve < 608 \kms (90 per cent confidence), with a median likelihood of 544\kms. The fact that \ve^2 is significantly greater than 2\vc^2 (where \vc=220\kms is the local circular velocity) implies that there must be a significant amount of mass exterior to the Solar circle, i.e. this convincingly demonstrates the presence of a dark halo in the Galaxy. For a simple isothermal halo, one can calculate that the minimum radial extent is 58\sim58 kpc. We use our constraints on \ve to determine the mass of the Milky Way halo for three halo profiles. For example, an adiabatically contracted NFW halo model results in a virial mass of 1.420.54+1.14×1012M1.42^{+1.14}_{-0.54}\times10^{12}M_\odot and virial radius of 30545+66305^{+66}_{-45} kpc (90 per cent confidence). For this model the circular velocity at the virial radius is 142^{+31}_{-21}\kms. Although our halo masses are model dependent, we find that they are in good agreement with each other.Comment: 19 pages, 9 figures, MNRAS (accepted). v2 incorporates minor cosmetic revisions which have no effect on the results or conclusion

    Early Galactic Evolution of Carbon, Nitrogen and Oxygen

    Get PDF
    We present results on carbon, nitrogen, and oxygen abundances for a sample of unevolved metal-poor stars with metallicities in the range -0.3< [Fe/H]< -3. Oxygen abundances derived from different indicators are compared showing consistently that in the range 0.3 >[Fe/H]>-3.0, the [O/Fe] ratio increases from approximately 0 to 1. We find a good agreement between abundances based on the forbidden line, the OH and IR triplet lines when gravities based on Hipparcos} parallaxes are considered for the sample stars. Gravities derived from LTE ionization balance in metal-poor stars with [Fe/H]< -1 are likely too low, and could be responsible for an underestimation of the oxygen abundances derived using the [OI] line. [C/Fe] and [N/Fe] ratios appear to be constant, independently of metallicity, in the same range. However, they show larger scatter than oxygen at a given metallicity, which could reflect the larger variety of stellar production sites for these other elements.Comment: 10 pages, 3 figures, To appear in the proceedings of the conference "The Chemical Evolution of The Milky Way: Stars versus Clusters", eds. F. Matteucci and F. Giovannelli, Vulcano, Italy, September 20-24 199

    Abundances and Kinematics of Field Halo and Disk Stars I: Observational Data and Abundance Analysis

    Full text link
    We describe observations and abundance analysis of a high-resolution, high-S/N survey of 168 stars, most of which are metal-poor dwarfs. We follow a self-consistent LTE analysis technique to determine the stellar parameters and abundances, and estimate the effects of random and systematic uncertainties on the resulting abundances. Element-to-iron ratios are derived for key alpha, odd, Fe-peak, r- and s-process elements. Effects of Non-LTE on the analysis of Fe I lines are shown to be very small on the average. Spectroscopically determined surface gravities are derived that are generally close to those obtained from Hipparcos parallaxes.Comment: 41 pages, 7 Postscript figures. Accepted for publication in the A

    A multi-wavelength study of the radio source G296.7-0.9: confirmation as a Galactic supernova remnant

    Full text link
    We present a multi-wavelength study of the radio source G296.7-0.9. This source has a bilateral radio morphology, a radio spectral index of -0.5 +/- 0.1, sparse patches of linear polarisation, and thermal X-rays with a bright arc near the radio boundary. Considering these characteristics, we conclude that G296.7-0.9 is a supernova remnant (SNR). The age and morphology of the SNR in the context of its environment suggest that the source is co-located with an HII region, and that portions of the shock front have broken out into a lower density medium. We see no evidence for a neutron star or pulsar wind nebula associated with SNR G296.7-0.9.Comment: 11 pages with 9 figures and 2 tables. Accepted for publication in MNRA

    A search for p-modes and other variability in the binary system 85 Pegasi using MOST photometry

    Get PDF
    Context: Asteroseismology has great potential for the study of metal-poor stars due to its sensitivity to determine stellar ages. Aims: Our goal was to detect p-mode oscillations in the metal-poor sub-dwarf 85 Peg A and to search for other variability on longer timescales. Methods: We have obtained continuous high-precision photometry of the binary system 85 Pegasi with the MOST space telescope in two seasons (2005 & 2007). Furthermore, we redetermined vsini for 85 Peg A using high resolution spectra obtained through the ESO archive, and used photometric spot modeling to interpret long periodic variations. Results: Our frequency analysis yields no convincing evidence for p-modes significantly above a noise level of 4 ppm. Using simulated p-mode patterns we provide upper RMS amplitude limits for 85 Peg A. The light curve shows evidence for variability with a period of about 11 d and this periodicity is also seen in the follow up run in 2007; however, as different methods to remove instrumental trends in the 2005 run yield vastly different results, the exact shape and periodicity of the 2005 variability remain uncertain. Our re-determined vsini value for 85 Peg A is comparable to previous studies and we provide realistic uncertainties for this parameter. Using these values in combination with simple photometric spot models we are able to reconstruct the observed variations. Conclusions: The null-detection of p-modes in 85 Peg A is consistent with theoretical values for pulsation amplitudes in this star. The detected long-periodic variation must await confirmation by further observations with similar or better precision and long-term stability. If the 11 d periodicity is real, rotational modulation of surface features on one of the components is the most likely explanation.Comment: 11 pages, 9 figures, accepted for publication in A&

    Non-LTE line formation for heavy elements in four very metal-poor stars

    Full text link
    Stellar parameters and abundances of Na, Mg, Al, K, Ca, Sr, Ba, and Eu are determined for four very metal-poor stars (-2.66 < [Fe/H] < -2.15) based on non-LTE line formation and analysis of high-resolution (R ~60000 and 90000) high signal-to-noise (S/N > 200) observed spectra. A model atom for H I is presented. An effective temperature was obtained from the Balmer Halpha and Hbeta line wing fits, the surface gravity from the Hipparcos parallax if available and the non-LTE ionization balance between Ca I and Ca II. Based on the hyperfine structure affecting the Ba II resonance line, the fractional abundance of the odd isotopes of Ba was derived for HD 84937 and HD 122563 from a requirement that Ba abundances from the resonance line and subordinate lines of Ba II must be equal. For each star, non-LTE leads to a consistency of Teff from two Balmer lines and to a higher temperature compared to the LTE case, by up to 60 K. Non-LTE effects are important in spectroscopic determination of surface gravity from Ca I/Ca II. For each star with a known trigonometric gravity, non-LTE abundances from the lines of two ionization stages agree within the error bars, while a difference in the LTE abundances consists of 0.23 dex to 0.40 dex for different stars. Departures from LTE are found to be significant for the investigated atoms, and they strongly depend on stellar parameters. For HD 84937, the Eu/Ba ratio is consistent with the relative solar system r-process abundances, and the fraction of the odd isotopes of Ba, f_odd, equals 0.43+-0.14. The latter can serve as a constraint on r-process models. The lower Eu/Ba ratio and f_odd = 0.22+-0.15 found for HD 122563 suggest that the s-process or the unknown process has contributed significantly to the Ba abundance in this star.Comment: accepted for publication in A&A, November 16, 200
    corecore