224 research outputs found

    Numerical investigation on anti-icing performance of heating surface for NACA0012 airfoil

    Get PDF
    Ice accretion is a phenomenon that super-cooled water droplets impinge and accrete on wall surfaces. It is known that icing can cause severe accidents. To prevent the icing, an electro-thermal heater is recently adopted as the de- and anti-icing device for wings. In the present study, we conducted icing simulations of a two-dimensional NACA0012 airfoil with an electro-thermal heater on the leading-edge surface to optimize the heating area. The attack angle and the heating area were changed from 0 to 4 degrees and from 0 to 2.0% chord length, respectively. Through the simulations, we found that the lift coefficient was significantly improved by the heating, the drag coefficient generally decreased with increasing the heating area, and at the attack angle of 0 degree and the heating area of 1.0% chord length, the drag coefficient exceptionally became worse because of the residual ice shape with horns

    Direct numerical simulation of Taylor–Couette turbulent flow controlled by a traveling wave-like blowing and suction

    Get PDF
    In wall turbulence, a traveling wave-like control is known to decrease the skin-friction drag and induce the relaminarization phenomenon. Because it is noteworthy to investigate the control effect in other canonical flows, direct numerical simulations of fully developed turbulent Taylor–Couette flows are performed. The Reynolds number, based on the wall velocity of a rotating inner cylinder and the radius of a centerline between cylinders, is set to 84,000. The traveling wave-like blowing and suction is imposed on the inner or outer cylinder wall, and the control effect is parametrically investigated. In the inner cylinder control, the torque reduction is obtained when the wave travels in the co-rotating direction with the inner cylinder, and its wavespeed is faster than the rotation. In the outer cylinder control, in contrast, the torque reduction is obtained when the wave propagates in the opposite direction. While the control is imposed on one side wall (i.e., inner or outer cylinder), the control affects the entire flow region. The Taylor vortex remains, while the traveling wave affects its strength. The three-component decomposition analysis shows that the traveling wave creates the coherent contribution on the torque, while the random contribution on it is reduced. Accordingly, a major factor of the torque reduction in the Taylor–Couette flow is the reduction of the random contribution. In addition, for the faster wavespeed cases with the small wavenumber (i.e., the long wavelength), the drag reduction larger than 60% is obtained and the relaminarization occurs in these cases

    Experimental investigation of relaminarizing and transitional channel flows

    Get PDF
    A hot-wire measurement was conducted in a planar channel flow that originated from a strongly disturbed flow in an entrance channel followed by an expansion channel used to reduce the Reynolds number (Re). From ceasing decrease of the streamwise velocity fluctuation energy and the linear extrapolation of the intermittency factor, the lower marginal Re, which is defined as the minimum Re for partial existence of sustainable turbulence, is estimated around 1400 based on the channel width and the bulk velocity. The upper marginal Re at which the intermittency factor reaches one is about 2600. The flow fields passing a turbulent patch were reconstructed with conditional sampling of the streamwise velocity data based on the time of laminar-turbulence interfaces and the reconstructed flow fields indicate a large-scale flow structure across laminar and turbulent parts. This large structure makes it possible for some regions to be at higher Re than the average, so that turbulence can partly survive. The moderate-scale disturbances larger than the turbulent one appear in the non-turbulent parts of the transitional flow, and in these cases the non-turbulent velocity profile is almost identical to the turbulent one. The large-scale fluctuation is observed even over Re = 2600. This leads to the conclusion that a turbulent channel flow close to the upper marginal Re becomes inhomogeneous. (C) 2012 American Institute of Physics. [https://doi.org/10.1063/1.4772065]ArticlePHYSICS OF FLUIDS. 24(12):124102 (2012)journal articl

    Autoantibodies against EPCR are found in antiphospholipid syndrome and are a risk factor for fetal death

    Get PDF
    The antiphospholipid syndrome (APS) is associated with thrombosis and fetal death but the pathologic mechanisms are poorly understood. Since endothelial protein C receptor (EPCR) plays a role in the anticoagulant system and in placental development, we hypothesized that anti-EPCR autoantibodies may be involved in clinical manifestations of APS and in fetal loss. The levels of immunoglobulin M (IgM) and IgG anti-EPCR autoantibodies were analyzed by enzyme-linked immunosorbent assay (ELISA) in 43 patients with APS and 43 controls. Anti-EPCR levels were higher in APS patients than in controls. Interestingly, one of the IgM anti-EPCR autoantibodies inhibited the generation of activated protein C on endothelium. Since markedly high anti-EPCR levels were found in women with fetal death, 87 patients with a first episode of unexplained fetal death were subsequently analyzed and their anti-EPCR levels were compared with 87 matched controls. We found that anti-EPCR autoantibodies constitute an independent risk factor for a first fetal death episode: the adjusted odds ratios (ORs) for anti-EPCR autoantibodies above the 95th percentile were 23.0 (95% confidence interval [CI], 2.0-266.3) for IgM and 6.8 (95% CI, 1.2-38.4) for IgG. Anti-EPCR autoantibodies can be detected in APS patients and are independent risk factors for fetal death

    Increased T-cell immunity against aquaporin-4 and proteolipid protein in neuromyelitis optica.

    Get PDF
    In neuromyelitis optica (NMO), B-cell autoimmunity to aquaporin-4 (AQP4) has been shown to be essential. However, the role of T cells remains ambiguous. Here, we first showed an increase in CD69+ activated T cells in PBMCs during NMO relapses. Next, T-cell responses to AQP4 and myelin peptides were studied in 12 NM0 patients, 10 multiple sclerosis (MS) patients and 10 healthy subjects (HS). Four hours after adding 1 of 28 overlapping AQP4 peptides, a mixture of AQP4 peptides (AQP4-M) or one of six distinct myelin peptides to 2-day cultured PBMC, CD69 expression on CD4+ T cells was examined. Data were analyzed by paired t-test, frequency of samples with 3-fold increase of CD69 on CD4+ cells (fSI3) and mean stimulation index (mSI). The T-cell response to AQP4-M was significantly increased in NMO (fSI3 = 10/12, mSI = 5.50), with AQP4 (11-30) and AQP4 (91-110) representing the two major epitopes (AQP4 (11-30), fSI3 = 11/12, mSI = 16.0 and AQP4 (91-110), fSI3 = 11/12, mSI = 13.0). Significant but less extensive responses to these two epitopes were also observed in MS and HS. Significant reactivities against AQP4 (21-40), AQP4 (61-80), AQP4 (101-120), AQP4 (171-190) and AQP4 (211-230) were exclusively found in NMO. In addition, responses to AQP4 (81-100) were higher and more frequently detected in NMO, without reaching statistical significance. Interestingly, among the six myelin peptides studied, proteolipid protein (95-116) induced a significant T-cell response in NMO (fSI3 = 7/12, mSI = 4.60). Our study suggests that cellular as well as humoral responses to AQP4 are necessary for NMO development and that the immune response to myelin protein may contribute to disease pathogenesis

    A new panel of epitope mapped monoclonal antibodies recognising the prototypical tetraspanin CD81

    Get PDF
    Background: Tetraspanins are small transmembrane proteins, found in all higher eukaryotes, that compartmentalize cellular membranes through interactions with partner proteins. CD81 is a prototypical tetraspanin and contributes to numerous physiological and pathological processes, including acting as a critical entry receptor for hepatitis C virus (HCV). Antibody engagement of tetraspanins can induce a variety of effects, including actin cytoskeletal rearrangements, activation of MAPK-ERK signaling and cell migration. However, the epitope specificity of most anti-tetraspanin antibodies is not known, limiting mechanistic interpretation of these studies. Methods: We generated a panel of monoclonal antibodies (mAbs) specific for CD81 second extracellular domain (EC2) and performed detailed epitope mapping with a panel of CD81 mutants. All mAbs were screened for their ability to inhibit HCV infection and E2-CD81 association. Nanoscale distribution of cell surface CD81 was investigated by scanning electron microscopy. Results: The antibodies were classified in two epitope groups targeting opposing sides of EC2. We observed a wide range of anti-HCV potencies that were independent of their epitope grouping, but associated with their relative affinity for cell-surface expressed CD81. Scanning electron microscopy identified at least two populations of CD81; monodisperse and higher-order assemblies, consistent with tetraspanin-enriched microdomains. Conclusions: These novel antibodies provide well-characterised tools to investigate CD81 function, including HCV entry, and have the potential to provide insights into tetraspanin biology in general

    Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants

    Get PDF
    RNA silencing is one of the main defense mechanisms employed by plants to fight viruses. In change, viruses have evolved silencing suppressor proteins to neutralize antiviral silencing. Since the endogenous and antiviral functions of RNA silencing pathway rely on common components, it was suggested that viral suppressors interfere with endogenous silencing pathway contributing to viral symptom development. In this work, we aimed to understand the effects of the tombusviral p19 suppressor on endogenous and antiviral silencing during genuine virus infection. We showed that ectopically expressed p19 sequesters endogenous small RNAs (sRNAs) in the absence, but not in the presence of virus infection. Our presented data question the generalized model in which the sequestration of endogenous sRNAs by the viral suppressor contributes to the viral symptom development. We further showed that p19 preferentially binds the perfectly paired ds-viral small interfering RNAs (vsiRNAs) but does not select based on their sequence or the type of the 5’ nucleotide. Finally, co-immunoprecipitation of sRNAs with AGO1 or AGO2 from virus-infected plants revealed that p19 specifically impairs vsiRNA loading into AGO1 but not AGO2. Our findings, coupled with the fact that p19-expressing wild type Cymbidium ringspot virus (CymRSV) overcomes the Nicotiana benthamiana silencing based defense killing the host, suggest that AGO1 is the main effector of antiviral silencing in this host-virus combination
    corecore