2,266 research outputs found

    Stylolites in the Burlington Limestone near Kinderhook, Illinois

    Get PDF
    Weil developed stylolites showing a peculiar relationship to chert occur in the Burlington limestone north of Kinderhook, Illinois. Specimens were studied by the preparation of insoluble residues of the limestone and clay cap, and by making thin sections of the chert nodules. Stockdale\u27s conclusion of origin by solution in an indurated rock is ascribed to for the stylolites in question because, (1) crinoid stems are fluted along the sides of prongs the same as the mass of the rock, (2) the suite of minerals occurring in the clay cap\u27\u27 represents nearly a true average of the suites of minerals from the residues above and below the stylolite, (3) the chert in every case examined was prior to the stylolite formation as shown by fluting along the sides and pitting of upper and lower surfaces, and (4) the presence of systems of subsidiary stylolites which crosscut the prongs of the earlier and larger system. The thickness of the clay cap has little relation to the amount of material removed, as it varied up to 75 per cent soluble

    Chandra X-ray analysis of the massive high-redshift galaxy clusters ClJ1113.1-2615 and ClJ0152.7-1357

    Get PDF
    We present an analysis of Chandra observations of two high-redshift clusters of galaxies, ClJ1113.1-2615 at z=0.725 and ClJ0152.7-1357 at z=0.833. We find ClJ1113 to be relaxed with kT=4.3^{+0.5}_{-0.4}keV and a mass (within the virial radius) of 4.3^{+0.8}_{-0.7}*10^{14}Msol. ClJ0152, by contrast, is resolved into a northern and southern subcluster, each massive and X-ray luminous, in the process of merging. The temperatures of the subclusters are found to be 5.5^{+0.9}_{-0.8}keV and 5.2^{+1.1}_{-0.9}keV respectively, and their respective masses are 6.1^{+1.7}_{-1.5}*10^{14}Msol and 5.2^{+1.8}_{-1.4}*10^{14}Msol within the virial radii. 2D modelling of the X-ray surface brightness reveals excess emission between the subclusters; suggestive, but not conclusive evidence of a shock front. We make a first attempt at measuring the cluster M-T relation at z~0.8, and find no evolution in its normalisation, supporting the previous assumption of an unevolving M-T relation. We also find little or no evolution in the L-T relation, the gas fraction-T relation, the beta-T relation or the metallicity. These results suggest that, in at least some massive clusters, the hot gas was in place, and containing its metals, at z~0.8. We also highlight the need to correct for the degradation of the Chandra ACIS low energy quantum efficiency in high-redshift cluster studies when the low energy absorption is often assumed to be the Galactic value, rather than measured.Comment: 55 pages, 16 figures, Latex. Accepted for publication in Astrophysical Journal. Author address corrected, reference added. Error in Eqn 3 corrected - small changes to gas mass values in text and Fig 15. Conclusions unchange

    Electron microscopy structure of human APC/C-CDH1-EMI1 reveals multimodal mechanism of E3 ligase shutdown.

    Get PDF
    The anaphase-promoting complex/cyclosome (APC/C) is a similar to 1.5-MDa multiprotein E3 ligase enzyme that regulates cell division by promoting timely ubiquitin-mediated proteolysis of key cell-cycle regulatory proteins. Inhibition of human APC/C-CDH1 during interphase by early mitotic inhibitor 1 (EMI1) is essential for accurate coordination of DNA synthesis and mitosis. Here, we report a hybrid structural approach involving NMR, electron microscopy and enzymology, which reveal that EMI1's 143-residue C-terminal domain inhibits multiple APC/C-CDH1 functions. The intrinsically disordered D-box, linker and tail elements, together with a structured zinc-binding domain, bind distinct regions of APC/C-CDH1 to synergistically both block the substrate-binding site and inhibit ubiquitin-chain elongation. The functional importance of intrinsic structural disorder is explained by enabling a small inhibitory domain to bind multiple sites to shut down various functions of a 'molecular machine' nearly 100 times its size

    CLASH-VLT: Insights on the mass substructures in the Frontier Fields Cluster MACS J0416.1-2403 through accurate strong lens modeling

    Get PDF
    We present a detailed mass reconstruction and a novel study on the substructure properties in the core of the CLASH and Frontier Fields galaxy cluster MACS J0416.1-2403. We show and employ our extensive spectroscopic data set taken with the VIMOS instrument as part of our CLASH-VLT program, to confirm spectroscopically 10 strong lensing systems and to select a sample of 175 plausible cluster members to a limiting stellar mass of log(M_*/M_Sun) ~ 8.6. We reproduce the measured positions of 30 multiple images with a remarkable median offset of only 0.3" by means of a comprehensive strong lensing model comprised of 2 cluster dark-matter halos, represented by cored elliptical pseudo-isothermal mass distributions, and the cluster member components. The latter have total mass-to-light ratios increasing with the galaxy HST/WFC3 near-IR (F160W) luminosities. The measurement of the total enclosed mass within the Einstein radius is accurate to ~5%, including systematic uncertainties. We emphasize that the use of multiple-image systems with spectroscopic redshifts and knowledge of cluster membership based on extensive spectroscopic information is key to constructing robust high-resolution mass maps. We also produce magnification maps over the central area that is covered with HST observations. We investigate the galaxy contribution, both in terms of total and stellar mass, to the total mass budget of the cluster. When compared with the outcomes of cosmological NN-body simulations, our results point to a lack of massive subhalos in the inner regions of simulated clusters with total masses similar to that of MACS J0416.1-2403. Our findings of the location and shape of the cluster dark-matter halo density profiles and on the cluster substructures provide intriguing tests of the assumed collisionless, cold nature of dark matter and of the role played by baryons in the process of structure formation.Comment: 26 pages, 22 figures, 7 tables; accepted for publication in the Astrophysical Journal. A high-resolution version is available at https://sites.google.com/site/vltclashpublic/publications/Grillo_etal_2014.pd

    CLASH-VLT: A Highly Precise Strong Lensing Model of the Galaxy Cluster RXC J2248.7-4431 (Abell S1063) and Prospects for Cosmography

    Get PDF
    We perform a comprehensive study of the total mass distribution of the galaxy cluster RXCJ2248 (z=0.348z=0.348) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models where we use different samples of multiple image families, parametrizations of the mass distribution and cosmological parameters. As input information for the strong lensing models, we use the CLASH HST imaging data and spectroscopic follow-up observations, carried out with the VIMOS and MUSE spectrographs, to identify bona-fide multiple images. A total of 16 background sources, over the redshift range 1.0−6.11.0-6.1, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to 10 individual sources. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. We show that with a careful selection of a sample of spectroscopically confirmed multiple images, the best-fit model reproduces their observed positions with a rms of 0.30.3 in a fixed flat Λ\LambdaCDM cosmology, whereas the lack of spectroscopic information lead to biases in the values of the model parameters. Allowing cosmological parameters to vary together with the cluster parameters, we find (at 68%68\% confidence level) Ωm=0.25−0.16+0.13\Omega_m=0.25^{+0.13}_{-0.16} and w=−1.07−0.42+0.16w=-1.07^{+0.16}_{-0.42} for a flat Λ\LambdaCDM model, and Ωm=0.31−0.13+0.12\Omega_m=0.31^{+0.12}_{-0.13} and ΩΛ=0.38−0.27+0.38\Omega_\Lambda=0.38^{+0.38}_{-0.27} for a universe with w=−1w=-1 and free curvature. Using toy models mimicking the overall configuration of RXCJ2248, we estimate the impact of the line of sight mass structure on the positional rms to be 0.3±0.10.3\pm 0.1.(ABRIDGED)Comment: 23 pages, 13 figures, accepted for publication in A&

    Planck's Dusty GEMS: Gravitationally lensed high-redshift galaxies discovered with the Planck survey

    Get PDF
    We present an analysis of 11 bright far-IR/submm sources discovered through a combination of the Planck survey and follow-up Herschel-SPIRE imaging. Each source has a redshift z=2.2-3.6 obtained through a blind redshift search with EMIR at the IRAM 30-m telescope. Interferometry obtained at IRAM and the SMA, and optical/near-infrared imaging obtained at the CFHT and the VLT reveal morphologies consistent with strongly gravitationally lensed sources. Additional photometry was obtained with JCMT/SCUBA-2 and IRAM/GISMO at 850 um and 2 mm, respectively. All objects are bright, isolated point sources in the 18 arcsec beam of SPIRE at 250 um, with spectral energy distributions peaking either near the 350 um or the 500 um bands of SPIRE, and with apparent far-infrared luminosities of up to 3x10^14 L_sun. Their morphologies and sizes, CO line widths and luminosities, dust temperatures, and far-infrared luminosities provide additional empirical evidence that these are strongly gravitationally lensed high-redshift galaxies. We discuss their dust masses and temperatures, and use additional WISE 22-um photometry and template fitting to rule out a significant contribution of AGN heating to the total infrared luminosity. Six sources are detected in FIRST at 1.4 GHz. Four have flux densities brighter than expected from the local far-infrared-radio correlation, but in the range previously found for high-z submm galaxies, one has a deficit of FIR emission, and 6 are consistent with the local correlation. The global dust-to-gas ratios and star-formation efficiencies of our sources are predominantly in the range expected from massive, metal-rich, intense, high-redshift starbursts. An extensive multi-wavelength follow-up programme is being carried out to further characterize these sources and the intense star-formation within them.Comment: A&A accepte

    RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies

    Get PDF
    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope
    • …
    corecore