494 research outputs found

    Improving regional ozone modeling through systematic evaluation of errors using the aircraft observations during the International Consortium for Atmospheric Research on Transport and Transformation

    Get PDF
    During the operational phase of the ICARTT field experiment in 2004, the regional air quality model STEM showed a strong positive surface bias and a negative upper troposphere bias (compared to observed DC-8 and WP-3 observations) with respect to ozone. After updating emissions from NEI 1999 to NEI 2001 (with a 2004 large point sources inventory update), and modifying boundary conditions, low-level model bias decreases from 11.21 to 1.45 ppbv for the NASA DC-8 observations and from 8.26 to −0.34 for the NOAA WP-3. Improvements in boundary conditions provided by global models decrease the upper troposphere negative ozone bias, while accounting for biomass burning emissions improved model performance for CO. The covariances of ozone bias were highly correlated to NOz, NOy, and HNO3 biases. Interpolation of bias information through kriging showed that decreasing emissions in SE United States would reduce regional ozone model bias and improve model correlation coefficients. The spatial distribution of forecast errors was analyzed using kriging, which identified distinct features, which when compared to errors in postanalysis simulations, helped document improvements. Changes in dry deposition to crops were shown to reduce substantially high bias in the forecasts in the Midwest, while updated emissions were shown to account for decreases in bias in the eastern United States. Observed and modeled ozone production efficiencies for the DC-8 were calculated and shown to be very similar (7.8) suggesting that recurring ozone bias is due to overestimation of NOx emissions. Sensitivity studies showed that ozone formation in the United States is most sensitive to NOx emissions, followed by VOCs and CO. PAN as a reservoir of NOx can contribute to a significant amount of surface ozone through thermal decomposition

    Associations between the gut microbiome and metabolome in early life

    Get PDF
    Background: The infant intestinal microbiome plays an important role in metabolism and immune development with impacts on lifelong health. The linkage between the taxonomic composition of the microbiome and its metabolic phenotype is undefined and complicated by redundancies in the taxon-function relationship within microbial communities. To inform a more mechanistic understanding of the relationship between the microbiome and health, we performed an integrative statistical and machine learning-based analysis of microbe taxonomic structure and metabolic function in order to characterize the taxa-function relationship in early life. Results: Stool samples collected from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) at approximately 6-weeks (n = 158) and 12-months (n = 282) of age were profiled using targeted and untargeted nuclear magnetic resonance (NMR) spectroscopy as well as DNA sequencing of the V4-V5 hypervariable region from the bacterial 16S rRNA gene. There was significant inter-omic concordance based on Procrustes analysis (6 weeks: p = 0.056; 12 months: p = 0.001), however this association was no longer significant when accounting for phylogenetic relationships using generalized UniFrac distance metric (6 weeks: p = 0.376; 12 months: p = 0.069). Sparse canonical correlation analysis showed significant correlation, as well as identifying sets of microbe/metabolites driving microbiome-metabolome relatedness. Performance of machine learning models varied across different metabolites, with support vector machines (radial basis function kernel) being the consistently top ranked model. However, predictive R2 values demonstrated poor predictive performance across all models assessed (avg: − 5.06% -- 6 weeks; − 3.7% -- 12 months). Conversely, the Spearman correlation metric was higher (avg: 0.344–6 weeks; 0.265–12 months). This demonstrated that taxonomic relative abundance was not predictive of metabolite concentrations. Conclusions: Our results suggest a degree of overall association between taxonomic profiles and metabolite concentrations. However, lack of predictive capacity for stool metabolic signatures reflects, in part, the possible role of functional redundancy in defining the taxa-function relationship in early life as well as the bidirectional nature of the microbiome-metabolome association. Our results provide evidence in favor of a multi-omic approach for microbiome studies, especially those focused on health outcomes

    A Spitzer/IRAC Census of the Asymptotic Giant Branch Populations in Local Group Dwarfs. I. WLM

    Full text link
    We present Spitzer/IRAC observations at 3.6 and 4.5 microns along with optical data from the Local Group Galaxies Survey to investigate the evolved stellar population of the Local Group dwarf irregular galaxy WLM. These observations provide a nearly complete census of the asymptotic giant branch (AGB) stars. We find 39% of the infrared-detected AGB stars are not detected in the optical data, even though our 50% completeness limit is three magnitudes fainter than the red giant branch tip. An additional 4% of the infrared-detected AGBs are misidentified in the optical, presumably due to reddening by circumstellar dust. We also compare our results with those of a narrow-band optical carbon star survey of WLM, and find the latter study sensitive to only 18% of the total AGB population. We detect objects with infrared fluxes consistent with them being mass-losing AGB stars, and derive a present day total mass-loss rate from the AGB stars of 0.7-2.4 x 10^(-3) solar masses per year. The distribution of mass-loss rates and bolometric luminosities of AGBs and red supergiants are very similar to those in the LMC and SMC and the empirical maximum mass-loss rate observed in the LMC and SMC is in excellent agreement with our WLM data.Comment: Accepted by ApJ, 34 pages, 13 figures, version with high-resolution figures available at: http://webusers.astro.umn.edu/~djackson

    The solvation and dissociation of 4-benzylaniline hydrochloride in chlorobenzene

    Get PDF
    A reaction scheme is proposed to account for the liberation of 4-benzylaniline from 4-benzylaniline hydrochloride, using chlorobenzene as a solvent at a temperature of 373 K. Two operational regimes are explored: “closed” reaction conditions correspond to the retention of evolved hydrogen chloride gas within the reaction medium, whereas an “open” system permits gaseous hydrogen chloride to be released from the reaction medium. The solution phase chemistry is analyzed by 1H NMR spectroscopy. Complete liberation of solvated 4-benzylaniline from solid 4-benzylaniline hydrochloride is possible under “open” conditions, with the entropically favored conversion of solvated hydrogen chloride to the gaseous phase thought to be the thermodynamic driver that effectively controls a series of interconnecting equilibria. A kinetic model is proposed to account for the observations of the open system

    Tuberculosis in alpaca (Lama pacos) on a farm in Ireland. 1. A clinical report

    Get PDF
    This case report describes tuberculosis (TB) due to infection with Mycobacterium bovis (M. bovis) in alpaca (Lama pacos) on a farm in Ireland. Two severely debilitated alpaca were presented to the University Veterinary Hospital, University College Dublin in November 2004. Bloods were taken, and haematology and biochemistry results were indicative of chronic infection. Radiological examination showed evidence of diffuse granulomatous pneumonia suggestive of tuberculosis. On necropsy there were granulomatous lesions present throughout many body organs including lung, liver, kidney, intestine as well on peritoneum and mesentery. Culture of acid-fast bacilli from lesions led to a diagnosis of tuberculosis due to M. bovis. The use of intradermal skin testing proved inefficient and unreliable for ante mortem diagnosis of tuberculosis in alpaca. Infection due to M. bovis should be considered among the differential diagnoses of debilitating diseases in alpaca, particularly those farmed in areas known to be traditional black spots for tuberculosis in cattle

    Cell compaction is not required for the development of gradient refractive index profiles in the embryonic chick lens

    Get PDF
    The development of the eye requires the co-ordinated integration of optical and neural elements to create a system with requisite optics for the given animal. The eye lens has a lamellar structure with gradually varying protein concentrations that increase towards the centre, creating a gradient refractive index or GRIN. This provides enhanced image quality compared to a homogeneous refractive index lens. The development of the GRIN during ocular embryogenesis has not been investigated previously. This study presents measurements using synchrotron X-ray Talbot interferometry and scanning electron microscopy of chick eyes from embryonic day 10: midway through embryonic development to E18: a few days before hatching. The lens GRIN profile is evident from the youngest age measured and increases in magnitude of refractive index at all points as the lens grows. The profile is parabolic along the optic axis and has two distinct regions in the equatorial plane. We postulate that these may be fundamental for the independent central and peripheral processes that contribute to the optimisation of image quality and the development of an eye that is emmetropic. The spatial distributions of the distinct GRIN profile regions match with previous measurements on different fibre cell groups in chick lenses of similar developmental stages. Results suggest that tissue compaction may not be necessary for development of the GRIN in the chick eye lens

    Colouration in amphibians as a reflection of nutritional status : the case of tree frogs in Costa Rica

    Get PDF
    Colouration has been considered a cue for mating success in many species; ornaments in males often are related to carotenoid mobilization towards feathers and/or skin and can signal general health and nutrition status. However, there are several factors that can also link with status, such as physiological blood parameters and body condition, but there is not substantial evidence which supports the existence of these relationships and interactions in anurans. This study evaluated how body score and blood values interact with colouration in free-range Agalychnis callidryas and Agalychnis annae males. We found significant associations between body condition and plasmatic proteins and haematocrit, as well as between body condition and colour values from the chromaticity diagram. We also demonstrated that there is a significant relation between the glucose and plasmatic protein values that were reflected in the ventral colours of the animals, and haematocrit inversely affected most of those colour values. Significant differences were found between species as well as between populations of A. callidryas, suggesting that despite colour variation, there are also biochemical differences within animals from the same species located in different regions. These data provide information on underlying factors for colouration of male tree frogs in nature, provide insights about the dynamics of several nutrients in the amphibian model and how this could affect the reproductive output of the animals

    An Intraocular Pressure Polygenic Risk Score Stratifies Multiple Primary Open-Angle Glaucoma Parameters Including Treatment Intensity

    Get PDF
    Purpose: To examine the combined effects of common genetic variants associated with intraocular pressure (IOP) on primary open-angle glaucoma (POAG) phenotype using a polygenic risk score (PRS) stratification. Design: Cross-sectional study. Participants: For the primary analysis, we examined the glaucoma phenotype of 2154 POAG patients enrolled in the Australian and New Zealand Registry of Advanced Glaucoma, including patients recruited from the United Kingdom. For replication, we examined an independent cohort of 624 early POAG patients. Methods Using IOP genome-wide association study summary statistics, we developed a PRS derived solely from IOP-associated variants and stratified POAG patients into 3 risk tiers. The lowest and highest quintiles of the score were set as the low- and high-risk groups, respectively, and the other quintiles were set as the intermediate risk group. Main Outcome Measures: Clinical glaucoma phenotype including maximum recorded IOP, age at diagnosis, number of family members affected by glaucoma, cup-to-disc ratio, visual field mean deviation, and treatment intensity. Results: A dose–response relationship was found between the IOP PRS and the maximum recorded IOP, with the high genetic risk group having a higher maximum IOP by 1.7 mmHg (standard deviation [SD], 0.62 mmHg) than the low genetic risk group (P = 0.006). Compared with the low genetic risk group, the high genetic risk group had a younger age of diagnosis by 3.7 years (SD, 1.0 years; P < 0.001), more family members affected by 0.46 members (SD, 0.11 members; P < 0.001), and higher rates of incisional surgery (odds ratio, 1.5; 95% confidence interval, 1.1–2.0; P = 0.007). No statistically significant difference was found in mean deviation. We further replicated the maximum IOP, number of family members affected by glaucoma, and treatment intensity (number of medications) results in the early POAG cohort (P ≤ 0.01). Conclusions: The IOP PRS was correlated positively with maximum IOP, disease severity, need for surgery, and number of affected family members. Genes acting via IOP-mediated pathways, when considered in aggregate, have clinically important and reproducible implications for glaucoma patients and their close family members

    Results of an Expert Consensus Survey on the Treatment of Pulmonary Arterial Hypertension With Oral Prostacyclin Pathway Agents

    Get PDF
    Background Treatment of pulmonary arterial hypertension (PAH) has evolved substantially over the past two decades and varies according to etiology, functional class (FC), hemodynamic parameters, and other clinical factors. Current guidelines do not provide definitive recommendations regarding the use of oral prostacyclin pathway agents (PPAs) in PAH. To provide guidance on the use of these agents, an expert panel was convened to develop consensus statements for the initiation of oral PPAs in adults with PAH. Methods A systematic literature search was conducted using MEDLINE. The established RAND/University of California Los Angeles appropriateness method, which incorporates the Delphi method and the nominal group technique, was used to create consensus statements. Idiopathic, heritable, repaired congenital heart defect, and drug- or toxin-induced PAH (IPAH+) was considered as one etiologic grouping. The process was focused on the use of oral treprostinil or selexipag in patients with IPAH+ or connective tissue disease-associated PAH and FC II or III symptoms receiving background dual endothelin receptor antagonist/phosphodiesterase type 5 inhibitor therapy. Results The panel developed 14 consensus statements regarding the appropriate use of oral PPAs in the target population. The panel identified 13 clinical scenarios in which selexipag may be considered as a treatment option. Conclusions The paucity of clinical evidence overall, and particularly from randomized trials in this setting, creates a gap in knowledge. These consensus statements are intended to aid physicians in navigating treatment options and using oral PPAs in the most appropriate manner in patients with PAH

    Rapid progress on the vertebrate tree of life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Among the greatest challenges for biology in the 21st century is inference of the tree of life. Interest in, and progress toward, this goal has increased dramatically with the growing availability of molecular sequence data. However, we have very little sense, for any major clade, of how much progress has been made in resolving a full tree of life and the scope of work that remains. A series of challenges stand in the way of completing this task but, at the most basic level, progress is limited by data: a limited fraction of the world's biodiversity has been incorporated into a phylogenetic analysis. More troubling is our poor understanding of what fraction of the tree of life is understood and how quickly research is adding to this knowledge. Here we measure the rate of progress on the tree of life for one clade of particular research interest, the vertebrates.</p> <p>Results</p> <p>Using an automated phylogenetic approach, we analyse all available molecular data for a large sample of vertebrate diversity, comprising nearly 12,000 species and 210,000 sequences. Our results indicate that progress has been rapid, increasing polynomially during the age of molecular systematics. It is also skewed, with birds and mammals receiving the most attention and marine organisms accumulating far fewer data and a slower rate of increase in phylogenetic resolution than terrestrial taxa. We analyse the contributors to this phylogenetic progress and make recommendations for future work.</p> <p>Conclusions</p> <p>Our analyses suggest that a large majority of the vertebrate tree of life will: (1) be resolved within the next few decades; (2) identify specific data collection strategies that may help to spur future progress; and (3) identify branches of the vertebrate tree of life in need of increased research effort.</p
    corecore