6 research outputs found

    Light-yield response of liquid scintillators using 2–6 MeV tagged neutrons

    Get PDF
    Knowledge of the neutron light-yield response is crucial to the understanding of scintillator-based neutron detectors. In this work, neutrons from 2–6MeV have been used to study the scintillation light-yield response of the liquid scintillators NE 213A, EJ 305, EJ 331 and EJ 321P using event-by-event waveform digitization. Energy calibration was performed using a GEANT4 model to locate the edge positions of the Compton distributions produced by gamma-ray sources. The simulated light yield for neutrons from a PuBe source was compared to measured recoil proton distributions, where neutron energy was selected by time-of-flight. This resulted in an energy-dependent Birks parameterization to characterize the non-linear response to the lower energy neutrons. The NE 213A and EJ 305 results agree very well with existing data and are reproduced nicely by the simulation. New results for EJ 331 and EJ 321P, where the simulation also reproduces the data well, are presented

    Measurement of the 240Pu(n,f) cross-section at the CERN n-TOF facility : First results from experimental area II (EAR-2)

    Get PDF
    The accurate knowledge of the neutron-induced fission cross-sections of actinides and other isotopes involved in the nuclear fuel cycle is essential for the design of advanced nuclear systems, such as Generation-IV nuclear reactors. Such experimental data can also provide the necessary feedback for the adjustment of nuclear model parameters used in the evaluation process, resulting in the further development of nuclear fission models. In the present work, the 240Pu(n,f) cross-section was measured at CERN's n-TOF facility relative to the well-known 235U(n,f) cross section, over a wide range of neutron energies, from meV to almost MeV, using the time-of-flight technique and a set-up based on Micromegas detectors. This measurement was the first experiment to be performed at n-TOF's new experimental area (EAR-2), which offers a significantly higher neutron flux compared to the already existing experimental area (EAR-1). Preliminary results as well as the experimental procedure, including a description of the facility and the data handling and analysis, are presented

    The measurement programme at the neutron time-of-flight facility n-TOF at CERN

    Get PDF
    Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n-TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n-TOF will be presented

    Measurement of ⁷³Ge(n,γ) cross sections and implications for stellar nucleosynthesis

    Get PDF
    73Ge(n,Îł) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT=30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of 73Ge produced in stars, which would explain the low isotopic abundance of 73Ge in the solar system

    Nuclear data measurements at the upgraded neutron time-of-flight facility n-TOF at CERN

    No full text
    Applications of nuclear data like neutron-induced reaction cross sections are related to research fields as stellar nucleosynthesis, the study of nuclear level densities and strength functions, and also play a key role in the safety and criticality assessment of existing and future nuclear reactors, in areas concerning radiation dosimetry, medical applications, transmutation of nuclear waste, accelerator-driven systems and fuel cycle investigations. The evaluations in nuclear data libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n-TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2002. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at CERN's neutron time-of-flight facility n-TOF will be presented

    The measurement programme at the neutron time-of-flight facility n_TOF at CERN

    No full text
    Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n_TOF will be presented
    corecore