404 research outputs found

    Synthese und Charakterisierung SiC-basierter Katalysatorsysteme und deren Anwendung in der Oxidation von Methan

    Get PDF
    Die Nutzung fossiler Energieträger hat die wirtschaftliche und gesellschaftliche Entwicklung der Menschheit bedeutend geprägt. Die Relevanz der verschiedenen Brennstoffe ist dabei stark vom technologischen Niveau abhängig gewesen. Mit der fortschreitenden Entwicklung und dem Aufstreben der Automobilindustrie in der ersten Hälfte des 20. Jahrhunderts gewann Erdöl als Quelle für verschiedene Kraftstoffe und Grundchemikalien immer größere Bedeutung. Der Energieverbrauch der Industriestaaten ist seit dem stetig gestiegen und zum Ende des 20. Jahrhunderts treten immer mehr Schwellenländer wie China, Indien oder Brasilien mit großem Energiehunger in Erscheinung. Dadurch wurden die Vorkommen fossiler Brennstoffe mit immer höherem Tempo ausgebeutet, sodass Schätzungen davon ausgehen, dass bereits 2030 nur noch 75% des Bedarfs durch bereits erschlossene Lagerstätten gedeckt werden können.[1] Im Gegensatz dazu sind die Reserven an Erdgas noch deutlich größer. Erdgas besteht vor allem aus Methan, welches auch über alternative Methoden z.B. Biofermentation hergestellt werden kann. Neben der Nutzung als primärer Energieträger ist Methan Ausgangsstoff für die Herstellung einer Vielzahl chemischer Produkte, z.B. Methanol oder kurzkettige Olefine[2, 3]. Eine wichtige Zwischenstufe dieser Prozesse stellt die Herstellung von Synthesegas dar, einem Gemisch aus Wasserstoff und Kohlenmonoxid. Die Herstellung erfolgt industriell über die Reaktion von Methan und Wasserdampf, dem Steamreforming. Alternative Verfahren stellen die partielle Oxidation von Methan und das Dry Reforming dar. In dieser Arbeit wurde die Aktivität verschiedener Katalysatorsysteme in der Totaloxidation, der partiellen Oxidation und dem Dry Reforming von Methan untersucht. Zur Synthese der Katalysatoren wurde die von E.Kockrick[4, 5] entwickelte Mikroemulsionsmethode angewandt. Dabei wurde die Abhängigkeit der katalytischen Aktivität von der Zusammensetzung der Komposite und den Synthesebedingungen untersucht. Das modulare Syntheseprinzip der Mikroemulsionsmethode wurde durch die Substitution der katalytisch aktiven Spezies durch verschiedene Übergangsmetalle und Gemische demonstiert. Weiterhin wurde eine neue Methode zur Herstellung makroporöser SiC-Keramiken (Abbildung 1) entwickelt. Dabei wird ein flüssiges Polycarbosilan in einer Emulsion mit besonders hohem Anteil der inneren Phase (high internal phase emulsion = HIPE) polymerisiert und zum SiC umgesetzt. Diese SiC-PolyHIPEs zeichnen sich durch ihre hohe Porosität und geringe Dichte aus. Ausgehend von der Synthesevorschrift nach Schwab et al.,[6] die die Synthese styrolbasierter PolyHIPEs beschreibt, wurde Styrol schrittweise durch SMP-10 ersetzt. Die erfolgreiche Inkorporation wurde durch thermogravimetrische Untersuchungen nachgewiesen. Zur Vernetzung des HIPE wurden verschiedene Initiatoren verwendet. Über den Anteil des SMP-10 am PolyHIPE konnte direkt Einfluss auf den Porenradius und die Dichte genommen werden, wobei die Porosität konstant bei 75% gehalten werden konnte.[7] Das Potential der SiC-PolyHIPEs für den Einsatz als poröser Katalysatorträger konnte durch die Funktionalisierung mit CeO2 und den Einsatz in der temperaturprogrammierten Oxidation von Methan nachgewiesen werden. Bereits durch eine Beladung des SiC-PolyHIPEs mit 30 Gew.% CeO2 konnte die gleiche Umsetzungstemperatur des Methans erreicht werden wie bei reinem CeO2. Eine weitere Strategie zur Erzeugung katalytisch aktiver SiC-Materialien wurde über die Funktionalisierung des Polycarbosilans mit hydrophoben CeO2-Nanopartikeln und Cerkomplexen entwickelt. Dabei zeigte sich, dass durch das Einbringen von 5 Gew.% über Dodecylamin stabilisierter CeO2-Nanopartikel eine ähnliche Aktivität in der Methanoxidation erreicht wurde, wie mit reinem Cerdioxid. Die Funktionalisierung des SMP-10 mit Cerkomplexen ergab für alle Cerkomplexe eine Phasenseparation nach dem Entfernen des Lösungsmittels. Nach der getrennten Pyrolyse der Phasen konnte nur im Pyrolysat der festen Phase Cer nachgewiesen werden, wodurch die Methanoxidation katalysiert wird. Als weitere Methode zur Erzeugung katalytisch aktiver und poröser SiC-Komposite wurde die von E.Kockrick entwickelte inverse Mikroemulsionsmethode[4, 5] verwendet. Die gewonnenen CeO2/Pt-SiCKomposite zeigten spezifische Oberflächen von bis zu 482m²/g bei einer Pyrolysetemperatur von 840 °C. Bei höheren Pyrolysetemperaturen von 1200 bzw. 1500 °C wurden Komposite mit maximal 428 bzw. 87m²/g erhalten. Die katalytischen Untersuchungen der CeO2/Pt-SiC-Komposite erfolgten an einem selbst entwickelten Katalyseteststand mit online-Analytik.[8] Dabei wurden die Totaloxidation, die partielle Oxidation und das Dry Reforming von Methan untersucht. Die Umsetzungstemperatur in der Totaloxidation von Methan konnte um bis zu 443K abgesenkt werden. In der partiellen Oxidation von Methan, wie auch beim Dry Reforming konnte bereits ab einer Reaktortemperatur von 805 °C Umsätze gemäß dem thermodynamischen Gleichgewicht erreicht werden. Die Aktivität in der partiellen Oxidation ist vor allem abhängig vom Platingehalt im Komposit. Die höchste Aktivität war bei den Kompositen mit niedriger Pyrolysetemperatur zu verzeichnen. Nach der Pyrolyse bei 1500 °C hingegen wurden aufgrund der geringeren spezifischen Oberfläche und der damit einhergehenden verminderten Zugänglichkeit der aktiven Zentren geringere Umsätze beobachtet. Einen guten Kompromiss zwischen Oxidationsbeständigkeit und katalytischer Aktivität stellten hier die Komposite dar, die bei 1200 °C pyrolysiert wurden. Mit diesen Kompositen wurden ab 805 °C bis zu 90% Umsatz und 80% Selektivität zu CO in der partiellen Oxidation von Methan und im Dry Reforming erreicht. Beim wiederholten Einsatz der CeO2/Pt-SiC-Komposite in der temperaturprogrammierten Oxidation von Methan konnte nach über 7 Zyklen keine Deaktivierung des Katalysators beobachtet werden. Die Übertragbarkeit der Mikroemulsionsmethode konnte durch den Einsatz verschiedener anderer Katalysatormaterialien gezeigt werden. Die katalytische Aktivität der erhaltenen porösen MI/MII-SiCKomposite wurde in der temperaturprogrammierten Oxidation von Methan mit einer Absenkung der Onsettemperatur um 177K bis 267K bestimmt. Damit stellt die Mikroemulsionsmethode eine flexible und robuste Möglichkeit zur Herstellung poröser SiC-Komposit-Katalysatoren dar. Literatur [1] International Energy Agency; World Energy Outlook, 2010. [2] M. Stöcker, Microporous Mesoporous Mater., 1999, 29(1-2), 3–48. [3] A.P.E. York, T. Xiao, M.L.H. Green, and J.B. Claridge, Catal. Rev. - Sci. Eng., 2007, 49(4), 511 – 560. [4] E. Kockrick, P. Krawiec, U. Petasch, H.-P. Martin, M. Herrmann, and S. Kaskel, Chem. Mater., 2008, 20(1), 77–83. [5] E. Kockrick, R. Frind, M. Rose, U. Petasch, W. Böhlmann, D. Geiger, M. Herrmann, and S. Kaskel, J. Mater. Chem., 2009, 19(11), 1543–1553. [6] M.G. Schwab, I. Senkovska, M. Rose, N. Klein, M. Koch, J. Pahnke, G. Jonschker, B. Schmitz, M. Hirscher, and S. Kaskel, Soft Matter, 2009, 5(5), 1055. [7] R. Frind, M. Oschatz, and S. Kaskel, J. Mater. Chem., 2011, (in Revision). [8] R. Frind, L. Borchardt, E. Kockrick, L. Mammitzsch, U. Petasch, M. Herrmann, and S. Kaskel, Appl. Catal., A, 2011, (in Revision)

    Limited Occurrence of Denitrification in Four Shallow Aquifers in Agricultural Areas of the United States

    Get PDF
    The ability of natural attenuation to mitigate agricultural nitrate contamination in recharging aquifers was investigated in four important agricultural settings in the United States. The study used laboratory analyses, field measurements, and flow and transport modeling for monitoring well transects (0.5 to 2.5 km in length) in the San Joaquin watershed, California, the Elkhorn watershed, Nebraska, the Yakima watershed, Washington, and the Chester watershed, Maryland. Ground water analyses included major ion chemistry, dissolved gases, nitrogen and oxygen stable isotopes, and estimates of recharge date. Sediment analyses included potential electron donors and stable nitrogen and carbon isotopes. Within each site and among aquifer-based medians, dissolved oxygen decreases with ground water age, and excess N2 from denitrification increases with age. Stable isotopes and excess N2 imply minimal denitrifying activity at the Maryland and Washington sites, partial denitrification at the California site, and total denitrification across portions of the Nebraska site. At all sites, recharging electron donor concentrations are not sufficient to account for the losses of dissolved oxygen and nitrate, implying that relict, solid phase electron donors drive redox reactions. Zero-order rates of denitrification range from 0 to 0.14 μmol N L−1d−1, comparable to observations of other studies using the same methods. Many values reported in the literature are, however, orders of magnitude higher, which is attributed to a combination of method limitations and bias for selection of sites with rapid denitrification. In the shallow aquifers below these agricultural fields, denitrification is limited in extent and will require residence times of decades or longer to mitigate modern nitrate contamination

    Electrical conductance time constants for freely decaying arcs

    Full text link
    Electrical conductance time constants for the early stages of free decay after current modulation have been calculated from experimental measurements on a 5 mm diameter cascade arc at atmospheric pressure. The time constants were found by measuring the electric field response of the asymptotic portion of the arc column immediately after a sudden step decrease of arc current. The electric field strength was monitored by means of the copper cooling disks of the cascade, whose probe characteristics were studied thoroughly. The initial high current was supplied by a capacitor discharge circuit which was inductively compensated to produce a square wave pulse of ∼ 2 msec duration. Time constants for initial decay were measured in both argon and nitrogen for initial currents ranging from 100 to 400 amperes. The initial free decay time constants of nitrogen were found to increase weakly from approximately 25 to 35 usec over the initial current range considered. The time constants of argon decreased from approximately 100 to 60 Μsec over the same initial current range.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45820/1/10050_2005_Article_BF01392412.pd

    A Finite Volume Simulation Model for Saturated-Unsaturated Flow and Application to Gooburrum, Bundaberg, Queensland, Australia

    Get PDF
    In this paper, a two-dimensional control volume finite-element computational model is developed for simulating saltwater intrusion in a heterogeneous coastal alluvial aquifer system at Gooburrum located near Bundaberg in Queensland, Australia. The model consists of a coupled system of two non-linear partial differential equations. The first equation describes the flow of a variable-density fluid, and the second equation describes the transport of dissolved salt via a form of the Fokker–Planck equation. The outcomes of the work demonstrate that transport simulation techniques provide excellent tools for hydraulic investigations even when complex transition zones are involved

    Article 102 EGInsO. Section 3. Avoiding Conflicts of Jurisdiction

    Full text link

    Die Reichweite der notwendigen Umsetzung für eine wirksame Veröffentlichung

    Full text link
    corecore