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[11 The situation of a dense fluid overlying a lighter one is potentially unstable and under
certain conditions may result in fingers of dense contaminant freely convecting downward.
Free convection causes increased contaminant transport over larger distances and over
shorter timescales than is possible by diffusion alone. Unlike free convection in
homogenous porous media, free convection in heterogeneous porous media has received
relatively little attention. In this study, a well-understood problem of transient free
convection in homogeneous porous media, the Elder [1967b] “short heater” problem has
been modified to study the effects of heterogeneity in permeability distributions on solute
transport processes using a stochastic framework. A set of measurable indicator
characteristics including solute fluxes, solute present, center of gravity and finger
penetration depth are used in the quantitative analysis of output. Heterogeneity in the
permeability distribution provides both the triggering mechanism for the onset of
instabilities and also controls their subsequent growth and/or decay. Results show that (1)
an increase in the standard deviation of the log permeability field results in a greater
degree of instability at earlier times but promotes stability at later times, (2) an increase in
the horizontal correlation length of the log permeability field creates laterally extensive
low-permeability zones that dissipate upward and downward motion needed to maintain

convection and therefore causes a reduction in the degree of instability, (3) a greater
degree of heterogeneity causes greater uncertainty in predictions, and (4) traditional
predictive methods such as the Rayleigh number (based upon an average permeability) do
not generally work in their application to heterogeneous systems. Probability of
exceedence analysis also demonstrates that analyses based upon homogeneous
assumptions will typically underestimate, often quite significantly, the value of key

measurable characteristics.
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1. Introduction

[2] Previous field and laboratory studies have shown that
fluid density gradients, established by variations in concen-
tration and/or temperature of the fluid, play an important
role in solute and heat transport in many groundwater flow
systems. Intrusion of seawater in coastal aquifers [Huyakorn
et al., 1987], infiltration of leachates from waste disposal
sites [Frind, 1982], transport of salts due to agricultural
practices [Mulqueen and Kirkham, 1972] and accumulation
and subsequent downward migration of salt near the land
surface of a saline lake or playa [Wooding et al., 1997a,
1997b; Simmons and Narayan, 1997, 1998] are just a few
examples of groundwater systems where fluid density is
likely to play an important role in controlling groundwater
flow and solute transport processes. Under certain condi-
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tions, when a dense fluid overlies a lighter one, free
convection driven purely by density differences can occur.
This exacerbates the movement of contaminants causing
them to move over larger distances within shorter timescales
when compared with diffusion. This has important ramifi-
cations in the study of contaminant hydrology.

[3] The process of free convection in homogeneous
porous media has received considerable attention in the
past (for comprehensive reviews on this subject, see Geb-
hart et al. [1988)], Nield and Bejan [1999], and Simmons et
al. [2001]). However, free convection in heterogeneous
porous media has received considerably less attention.
Schincariol et al. [1997] studied the effects of heterogeneity
(particularly the variance and the correlation length of the
random permeability field) on the instability process. They
found that increased correlation length scales and increased
log permeability variance of the permeability distribution
promoted stability. They also suggested that stability criteria
that do not incorporate the characteristics of the permeabil-

4-1



SBH 4-2
ity field would not be suitable for use in natural porous
media. In their review paper on variable-density ground-
water flow and solute transport in heterogeneous porous
media, Simmons et al. [2001] carried out numerical experi-
ments to study density-induced instabilities in both periodi-
cally structured and random permeability fields. They
observed the onset of instabilities and their subsequent
growth or decay to be intimately related to both the geo-
metrical structure and the variance of the permeability field.
They further noted that stability criteria based upon average
statistically equivalent homogeneous properties were inap-
propriate for describing the onset and propagation of
unstable fingers in heterogeneous hydraulic conductivity
fields. Schincariol [1998] studied the instability of a dense
plume in randomly heterogeneous media and noted that
even with similar macroscopic field statistics, widely vary-
ing degrees of density-induced mixing occur among the
different realizations. He concluded that the currently used
stability criteria for plume type displacements were not
applicable in natural heterogeneous media. These conclu-
sions are consistent with those of Schincariol et al. [1997]
and Simmons et al. [2001].

[4] Although the studies described above have employed
random permeability fields, they examine either a single
realization or a very small number of realizations. They do
not present any statistical analysis of outputs carried out on
a larger set of realizations. As we will demonstrate in this
study, it is difficult to draw general “cause and effect” type
conclusions based on dense plume behavior within a single
permeability realization as the plume dynamics in another
statistically equivalent realization may be entirely different.
The effect of heterogeneity in a permeability field on
density-induced instability processes may better be quanti-
fied through a stochastic analysis of the dense plume
problem. This has not previously been attempted and
warrants investigation.

[5] In this paper, we present the first systematic stochas-
tic study of free convective processes in heterogeneous
porous media using Monte Carlo techniques. The USGS
variable-density groundwater flow and solute transport code
Saturated Unsaturated, Transport (SUTRA) developed by
Voss [1984] has been employed. The main objectives of this
study are twofold: (1) to quantify the effects of hetero-
geneity in porous media on density-driven instability pro-
cesses in order to provide some ‘“‘cause and effect”
understanding of trends in system behavior and (2) to
quantify the uncertainty in model predictions resulting from
the heterogeneity of the media. We have adapted one of the
most cited, widely known and well-understood problems of
free convection, the Elder [1967b] problem to include
heterogeneous hydraulic conductivity distributions. The
Elder problem was chosen for this study because (1) it is
a classical example of free convection phenomena, where
bulk fluid is driven purely by density differences, (2) it is a
strongly coupled nonlinear problem, (3) the original homo-
geneous Elder problem (both laboratory and numerically
based) is relatively well understood in comparison to many
other unstable variable-density flow and transport problems
and as a result has become one of the standard benchmarks
for “verifying” variable-density flow and transport simu-
lators, and (4) it is one of a very limited number of
problems that have clearly defined and understood temporal

PRASAD AND SIMMONS: DENSITY-DRIVEN FLOW IN HETEROGENEOUS MEDIA

features of unstable plume development (onset of fingers,
growth, coalescence etc. . .). Although system geometry and
boundary conditions reflect the experimental nature of
Elder’s original work, the simplicity of this somewhat
idealized system offers the advantage of providing an
evolving unstable flow system that can be described rela-
tively easily in physical terms and has been previously
discussed by numerous authors [e.g., Voss and Souza, 1987;
Oldenburg and Pruess, 1995; Kolditz et al., 1998; Valliap-
pan et al., 1998]. It therefore offers an excellent base case
upon which to build a study of the effect of heterogeneity.
Results of this study could then form the basis for further
analyses that employ different geometry and boundary
conditions.

[6] We briefly introduce a set of quantitative indicators or
measurable characteristics of instability to describe the
instability processes for the homogeneous system (hereafter
called the “base case”). Stochastic results of the heteroge-
neous adaptation of the Elder problem are then presented
and discussed in terms of these indicators of instability.

2. Problem Definition and Methods
2.1. The Elder [1967b] “Short Heater” Problem

[7] Elder [1967b] presented both experimental and
numerical results of thermal convection produced by heat-
ing a part of the base of a porous layer. The actual experi-
ment was performed in a Hele-Shaw cell and was called the
“short-heater”” problem. The solute analog of Elder’s
[1967b] “short heater” problem was developed by Voss
and Souza [1987]. This solute analog (see Figure 1) with
identical parameters (Table 1) was used in this study.

[8] The solute source located along the middle half of the
top boundary is specified as a constant concentration
boundary condition of unit value. The entire bottom boun-
dary is specified as a constant concentration boundary of
zero value. Only diffusion (no advection) of solute is
possible across the bottom boundary. Initially, the pressure
throughout the system is hydrostatic and no solute is
present. The solute enters the initially pure water by
diffusion increasing fluid density in the boundary layer
beneath the source. Free convection begins after sufficient
solute accumulation has occurred in the boundary layer.

[o] For ease of comparison, the temporal discretization
adopted by Voss and Souza [1987] was initially used. A total
simulation time of 20 years was discretized into 240 equal
time steps each of one month duration. The spatial discreti-
zation employed was determined by conducting a grid con-
vergence test using six spatial discretizations: (1) held (61
nodes horizontal (h) x 31 nodes vertical (v)), (2) peld (81(h)
x 41 (v)), (3) reld (101 (h) x 41(v)), (4) meld (121(h) x
31(v)), (5) neld (101 (h) x 51 (vi)) and (6) teld (121 (h) x 41
(v)). Of the four finer meshes, the mesh teld with discretiza-
tion of 121 x 41 nodes (Ax =35 m; Ay =3.75 m) was selected
because (1) results obtained using this mesh very closely
matched those of mesh neld with a higher resolution (101x 51
nodes; Ax =6 m; Ay = 3 m) with the latter consuming more
computing time and memory, a particularly important con-
sideration in the Monte Carlo simulation of nonlinear vari-
able-density flow phenomena and (2) the results obtained
using this mesh closely matched those of both Oldenburg and
Pruess [1995] and Kolditz et al. [1998] using finer meshes.
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Figure 1.

l

Boundary conditions for the Elder [1967b] problem. All boundaries are impermeable. The

middle half of the top boundary acts as a solute source and the entire bottom boundary acts as a solute
sink. The solute cannot advect across the bottom boundary but can only diffuse through it. Top left and
top right nodes are specified pressure of zero. After Voss and Souza [1987].

[10] With heterogeneous permeability fields applied to
the Elder [1967b] problem, the uniform temporal discreti-
zation of one month was found to be inadequate at higher
standard deviations of the log permeability field (o, > 0.4)
where a progressively larger number of simulations did not
converge. This prompted the use of variable length time
steps so as to make the initial time step considerably smaller
than one month. An initial time step of one day was chosen
with a time step multiplier of 1.5 and time step change cycle
of 10. The maximum allowed time step size was one month.
The 20 year simulation now had a total of 305 time steps, a
factor of 1.3 times greater than that originally used by Voss
and Souza [1987]. However, even with finer temporal
discretization, a very small number of realizations did not
converge, when the standard deviation was moderately
higher (oy > 0.5) owing to the zero longitudinal and
transverse dispersivities employed as per the original Voss
and Souza [1987] adaptation. A compromise was sought
between a small modification in the Elder problem on one
hand and a significant further refinement of temporal and
spatial discretization on the other, with the possibility of a
multifold increase in both memory and simulation time
requirements. To overcome the problem of nonconvergence
for a small number of realizations at higher standard
deviations, both longitudinal and transverse dispersivity
were increased from 0 to 4.0 meters. This value was
obtained through repeated trial and error and examining
the number of converged solutions. The lowest value of
longitudinal and transverse dispersivity that allowed the
solution to converge for all realizations was adopted and
is on the order of the element size. After these minor
modifications in dispersivity values and time step size,
results of the simulation of the Elder problem at different
times are given in Figure 2 (left panels). Note that with the
modified time step scheme numerical results are now given
at 1.02, 2.63, 4.63, 8.63, 10.63, 15.63 and 20.04 years
instead of 1, 2, 4, 10, 15 and 20 years. A comparison of
results with zero and nonzero dispersivity (Figure 2) show
that greater dispersion leads to a wider plume and slightly
less distinctive fingering at earlier times. However, the
overall nature of instability processes is similar for both

cases. Note that the results of the Elder problem with a fine
spatial and temporal discretization and a nonzero dispersiv-
ity (Figure 2, left panels) closely resemble those of Voss and
Souza [1987] with a coarse spatial and temporal discretiza-
tion and zero dispersivities. The simulation with nonzero
dispersivities, shown in Figure 2 (left panels), has been
adopted as the base case simulation for the stochastic study
of dense plume instability in heterogeneous porous media.

2.2. Stochastic (Monte Carlo) Implementation of the
Elder Problem

[11] A heterogeneous permeability field characterized by
a random spatial function (RSF) is described by three
pertinent variables: (1) mean (py), (2) standard deviation
(o), and (3) statistical anisotropy, anis (the ratio of vertical
correlation length (Ty) to horizontal correlation length (Ty)
of the log permeability field, Ty/Ty).

[12] The anisotropy ratio anis was controlled by varying
the horizontal correlation length. The mesh size and the
problem domain size place a restriction on the choice of
horizontal correlation length values. The minimum value of
horizontal correlation length chosen is 40 m, which contains
8 elements in the horizontal direction (Ax = 5 m). The
vertical correlation length of 30m also contains 8 elements
in the vertical direction (Ay = 3.75 m). The maximum value

Table 1. SUTRA Simulation Parameters for the Elder [1967b]
Problem®

Symbol Quantity Value Units
€ porosity 0.1 -

Civir initial concentration throughout 0.0 kg kg !
0p/OC  coefficient of density variation 200 kg m>
Po freshwater density 1000 kg m~?
k intrinsic permeability 4845 x 107" m?

Qy longitudinal dispersivity 0.0 m

ar transverse dispersivity 0.0 m

g acceleration due to gravity 9.81 ms 2

n dynamic viscosity of the fluid 1.0 x 107> kgm s
Dy molecular diffusion coefficient  3.565 x 107¢  m? s~

4 Parameter values are after Voss and Souza [1987].
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Figure 2. Concentration plots for the Elder problem: modified with nonzero dispersivity (left panels) at
elapsed times of (a) 1.02 years, (b) 2.63 years, (c) 4.63 years, (d) 10.63 years, (e) 15.63 years, and (f)
20.04 years and for the original problem with zero dispersivity (right panels) at elapsed times of (a) 1
year, (b) 2 years, (c) 4 years, (d) 10 years, (e) 15 years, and (f) 20 years. Both longitudinal and transverse
dispersivities for the modified problem have been set at 4 m instead of zero as in the original Elder
[1967b] problem adapted by Voss and Souza [1987] for the solute transport. The penetration depth of the
0.6 contour at 4.63 years (Figure 2c, left) is just greater than 50 m.

of horizontal correlation length has been restricted to 150 m,
so that the field will have at least 4 correlation lengths in the
horizontal direction (L = 600 m). These restrictions on
minimum and maximum value of correlation lengths were
used to preserve realization statistics, i.e., to ensure that the
statistical properties of all realizations within a set of
simulations remain constant throughout.

[13] The Sequential Gaussian Simulation (SGSIM) method
of GSLIB [Deutsch and Journel, 1992] with an exponential
variogram was used to generate random permeability fields
which were then applied the Elder [1967b] problem. Thirty
Monte Carlo (MC') simulations were run for each set of
identical input variables giving a confidence interval of
+0.360 at a confidence level of 95% [Kreyszig, 1988]. Thus
on 95% of occasions the mean values of the output variables

will lie within +0.360. Four experimental series were exam-
ined: (1) variation of o at constant py (—12.315) and anis
(0.3) series (o, = 0.1, 0.2, 0.4, 0.5, 0.6), (2) variation of Ty
series (Ty =40 m, 80 m, 100 m, 120 m, 150 m) at constant o
(0.4) and py (—12.315), (3) py series (py, = —12.315,
—12.917, —13.315, —13.917, —14.917) at constant oy
(0.4) and anis (0.3) and (4) variation of oy at a lower py
(—13.917) and anis (0.3) series (to examine a larger range of
o,=02,04,08, 1.2, and 1.4, p, was lowered to eliminate
the problem of nonconvergence at the higher py).

2.3. Generation of Instabilities

[14] When density variations (where a dense fluid over-
lies a less dense one) within a fluid body are significant,
solute transport may be the result not only of forced
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(hydraulically driven) convection (also commonly called
advection) but also of free convection [Gebart et al., 1988].
If the density difference is sufficiently high, free convection
can occur and an instability forms in which lobes of dense
fluid move downward counterbalanced by less dense fluid
moving upward. It is the density stratification that is the
main cause of the instability process which causes the
fluids to mix to achieve a stable density gradient [Schin-
cariol and Schwartz, 1990]. In flow through a porous
medium, perturbations or interfacial disturbances are con-
tinuously generated because of heterogeneities in the
medium [Moissis and Wheeler, 1990]. These perturbations
to flow occur on many spatial scales ranging from pore
scale heterogeneities to much larger heterogeneities on the
scale of the problem under consideration. Whether or not
these perturbations become unstable depends upon whether
their wavelength exceeds some critical wavelength, which
is a function of flow and transport parameters [Schincariol
et al., 1994].

[15] Schincariol et al. [1994] also pointed out that
numerical errors in solute transport codes may serve as a
perturbing function and lead to the development of insta-
bilities in a variable-density flow system. In numerical
model simulations such instabilities may not be realistic
and are usually uncontrollable. Furthermore, coarse discre-
tization can lead to significant numerical errors and numer-
ical dispersion that can alter the shape and growth of
developing fingers once they are generated. To overcome
problems associated with uncontrolled numerical perturba-
tions to flow and numerical dispersion effects, it is neces-
sary to use fine spatial and temporal discretization in the
numerical solution. It is expected and observed that in the
simulation of dense plume migration in heterogeneous
porous media that the variability in hydraulic properties is
significantly more important in controlling where instabil-
ities form, their initial flow rates, their evolving spatial
distribution with time as well as macroscopic dispersive
mixing associated with transport.

2.4. Measurable Characteristics of Instability

[16] In order to quantify whether or not instability is
expected to, or does, occur it is necessary to identify a
number of measurable characteristics. A traditional predic-
tor of instability is the dimensionless Rayleigh number (Ra)
defined as a ratio of buoyancy driven flux to diffusive flux
given by

Ra— Buoyancy/Gravitational flux  gkBACH

(1)

Diffusive/Dispersive flux evoDy

where g is acceleration due to gravity, k is the intrinsic
permeability, 8 = po '(9p/OC) is the linear expansion
coefficient of fluid density with changing fluid concentra-
tion, AC is the concentration difference between high- and
low-density fluids, H is depth of the porous layer, € is the
aquifer porosity, v, is the kinematic viscosity of the fluid
and D, is the molecular diffusivity.

[17] The input parameters (see Table 1) that define the
Elder [1967b] problem result in a value of Ra = 400. The
critical Rayleigh number (the minimum value of the Ray-
leigh number at which instability occurs) for the Elder
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problem is 40 [Elder, 1967a]. On this basis, convection
would be expected to occur in the flow system studied by
Elder [1967a, 1967b].

[18] We use the following set of measurable character-
istics in this study to assess system behavior as being either
stable or unstable and in the statistical analysis of simulation
output: (1) Concentration distribution (expressed as a
dimensionless mass fraction) of the solute in the aquifer at
any time for visual evidence of fingering. (2) Nusselt
number: the dimensionless Nusselt number (Nu) is defined
as the ratio of actual mass transfer rate when free convection
is present to the steady state mass transfer rate due to
diffusion alone given by

N Actual mass flux OH
U= =
Diffusive mass flux WL DyAC

()

where Q is the solute flux across the boundary and 7 and
Ly are the width and length of the source boundary
respectively. Since the Nusselt number is a dimensionless
representation of solute flux across a source boundary, it is
small for diffusive systems and significantly larger in
systems where unstable convection dominates transport. (3)
Solute present (SP): This quantity is proportional to the
amount of solute present in the aquifer at any time and is
calculated by finding the area under the average concen-
tration (at any given depth) versus depth graph. It is the
amount of solute mass present in the aquifer per unit cross-
sectional area per unit coefficient of density change (Jp/
0C). The dimension of SP obtained by computing the area
under the average (dimensionless) concentration versus
depth curve is (m). (4) Center of gravity of the plume
(CGP): This quantity is the vertical center of the gravity of
the plume present in the aquifer at any time measured from
the source boundary. In a free convective system processes
in the vertical direction dominate flow and transport. The
depth of plume migration in the (vertical) direction of
gravity is an important indicator of instability. Horizontal
movement could also be quantified in a heterogeneous
system given that resultant plumes are typically nonsym-
metric. However, in considering whether behavior is stable
or unstable, horizontal movement is a significantly less
sensitive indicator than vertical movement. In other
systems that employ different geometries, boundary con-
ditions or a horizontal ambient flow, some measure of
lateral movement may also be important. First, second or
third plume moments could be used in such cases. (5)
Penetration depth (PD): This quantity is the maximum
penetration depth of the 0.6 contour measured from the top
boundary. Though it is possible to monitor any concentra-
tion level, we have selected the 0.6 contour as it is
traditionally used in presenting concentration solutions for
the Elder problem.

[19] Interestingly, there is a wide range of other indicator
variables that could be employed in such a study and as
such, the measurable characteristics employed here are by
no means complete. Others that could be used to indicate
the presence of unstable behavior might include the max-
imum velocity of the plume with time, evidence of fluid
circulation in velocity vector fields and the spatial distribu-
tion of solute transfer across the source boundary. These are
not considered here.
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Figure 3. Nusselt number versus time (years) curve for the
homogeneous (base) case showing different stages of
instability. The boundary layer forms between 4 and B. B
is the point of onset of instability. C is the point when the
plume first touches the bottom. At D the denser portion of
the plume reaches the bottom in the interior. Between D and
E only diffusive spreading takes place.

[20] Results for some of these indicator variables are
given for the homogeneous Elder problem (base case) in
Figure 2 (concentration distribution), Figure 3 (Nu), and
Figure 4 (SP, CGP, and PD). These results clearly illustrate
how these variables can be applied to help explain various
aspects of the instability problem. A brief description of
these results is now given. In Figure 3, the changes in Nu
with time mark four distinct solute transport regimes.
Initially solute enters the system through diffusion. At early
times, vertical concentration gradients at the top boundary
are very high so that the rate of solute transfer is corre-
spondingly high. As the solute enters the aquifer, vertical
concentration gradients are reduced near the source and
consequently the rate of solute transfer is reduced. This
reduction in Nu continues until about one year. By this time,
sufficient solute has accumulated in the top boundary layer
beneath the source to cause instability (Figure 2, left
panels). Growth of fingers due to gravitational instability
begins and is accompanied by an increase in solute transport
(Figure 3). When compared with the concentration plot
shown in Figure 2 (left panels), it can be seen that the
growth of the 0.6 contour is retarded between about 3 and 5
years. This is because the 0.6 contour is unable to penetrate
any further due to a reduction in the concentration gradient
within the outer edge fingers. During this period instability
activity shifts to newly developing inner fingers which now
begin to grow. Because finger growth is now divided among
a greater number of fingers, the PD curve (Figure 4) shows
a significant reduction in growth rate between about 3 and 5
years. In this period, growth of already established outer
fingers almost stagnates as developing internal fingers grow
and consequently Nu continues to increase. The increase in
Nu continues until about 5 years when the lighter portion of
the plume touches the bottom. Because the plume has
reached the bottom, the vertical concentration gradient
within the plume is reduced as solute begins to accumulate
above the bottom boundary. Although fingers continue
growing in that the heavier portion of the plume continues
to sink (at reduced rates), the mass transfer rate is slowed
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down due to the reduction in concentration gradients which
are progressively felt closer to the source as mass accumu-
lation continues. Beyond about 5 years, coalescence of
fingers occurs and outer edge fingers continue to move
downward after entrainment of interior fingers and an
increase in the growth rate of the 0.6 contour is observed.
By about 9 years, the bulk of the plume has reached the
bottom. The plume now spreads laterally by diffusion and
dispersion. There is almost no further increase in PD after
this time. There is a sharp decrease in the solute transport
rate because fingers cannot grow further. The increase in SP
is almost linear up to around 9 years which indicates the
dominance of free convection (instability) as the main solute
transport mechanism. After this time, the growth of SP
slows as the plume has now touched the bottom. Similar
arguments as given for SP and PD indicator variables
explain the trend in CGP with time and will not be repeated
here.

3. Results and Discussion

[21] We begin by presenting a preliminary assessment of
the heterogeneous adaptation of the Elder problem by way
of visual inspection and describe why a stochastic analysis
of the problem is warranted. The effect of each of the input
variables (standard deviation, correlation length and mean
of the permeability distribution) on measurable output
indicators is then described within a stochastic framework.
In each case, the key observation made is the variation of
both the mean and standard deviation of each output
variable with time. In light of these results, we discuss the
limitations of the use of the traditional Rayleigh number in
its ability to predict the onset of instability in heterogeneous
systems. A probability of exceedance analysis is then
presented to demonstrate the implications of assuming
homogeneous conditions apply when heterogeneous con-
ditions actually exist. Finally, the variation of correlation
coefficients between output indicators with time is exam-
ined to demonstrate why numerous measurable character-
istics of instability may be desirable in the study of dense
plume migration in heterogeneous porous media.

3.1.

[22] We begin by a visual inspection of some results of
the heterogencous Elder problem. Figure 5 shows the

A Preliminary Assessment

140
120 4
100 4
80 -
60 T Jad
40 1
20 4

SP/CGP/PD (m)

Time (years)
------- SP ——CGP ——FPD
Figure 4. The solute present (SP), the center of gravity of

the plume (CGP), and penetration depth (PD) of 0.6 contour
versus time for the homogeneous (base) case.
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Figure 5. Concentration plots for two statistically equiva-
lent random permeability fields (shown at top where darker
regions correspond to areas of lower permeabilities, and
lighter regions correspond to areas of higher permeabilities),
rz8 (left panels) and rz/5 (right panels) at elapsed times of
(a) 1.02 years, (b) 10.63 years, and (c) 20.04 years. These
two fields are from the same simulation set, 7g3sd4 with
identical statistical parameters (py = —12.315; o, = 0.6; T
= 100 m and anis = 0.3).

concentration plots at simulation times: (1) 1.04, (2) 10.63
and (3) 20 years for two arbitrarily selected realizations, rz8
and rz15 from the simulation set rg3sd4 all of which have
identical statistics (py = —12.315; oy = 0.6; T,= 100 m and
anis = 0.3). The resulting fields have an average perme-
ability of 4.845 x 10" m? which is equal to the perme-
ability value used in the simulation of the original
homogeneous (base case) Elder problem. It is clear from
Figure 5 that the temporal and spatial response of these two
statistically equivalent fields are significantly different. An
inspection of the permeability distributions also shown in
Figure 5 suggests that solute transport processes are very
sensitive to the locations of high- and low-permeability
zones especially near the top boundary. This inherent differ-
ence among the response of different realizations is the
fundamental reason for undertaking a stochastic analysis of
the dense plume problem.

[23] Having established that two statistically equivalent
fields result in significantly different behavior of the prop-
agation of an unstable plume, the next question to explore is
what the effect of change in the heterogeneity (oy) of the
permeability distribution is on the instability process. We do
this by varying o, (0.1, 0.2, 0.4, 0.5, 0.6) in these two fields
while keeping all other parameters constant. The effect of
the variation in oy of these two sets of fields, 7z8 and rz/5 is
shown in Figure 6 as concentration plots at a simulation
time of 10.63 years (responses for three values of o, = 0.1,
0.4, 0.6 are shown in addition to the homogeneous case).
The responses of realization set 7z/5 (Figure 6, right panels)
shows that an increase in degree of heterogeneity amplitude
(i.e., increase in oy) tends to dissipate fingers by dispersive
mixing (note the variation in the penetration depth of the 0.6
contour) and therefore reduces the degree of instability.

4-7

Schincariol et al. [1997] and Schincariol [1998] arrived at
the same conclusion in their deterministic study. But will an
increase in the degree of the heterogeneity (oy) always
promote stability? An observation of plume dynamics in the
field rz8 (left panels) in Figure 6 shows that an increase in
the degree of the heterogeneity appears to have enhanced
the degree of instability.

[24] To further explore the effect of heterogeneity on the
range of likely behavior, both the maxima and minima of
output variables Nu, SP, CGP, and PD within a set were
identified and plotted against time (Figure 7) after analysis
of two complete simulation sets, rg3sdl/ (o, = 0.1) and
rg3sd4 (oy = 0.6). It is seen in Figure 7 that the maxima
of all these output variables for any time step correspond-
ing to the simulation set rg3sd! (oy = 0.1) are greater than
the minima of all output variables for the simulation set
rg3sd4 (oy = 0.6). This suggests that although oy of
simulation set rg3sd4 is greater than oy, of simulation
set rg3dl, there are some realizations in simulation set
rg3sd4 for which the minimum value of any output
variable is lower than the maximum value of that output
variable for some realizations in simulation set rg3sdl.
Thus increasing oy does not always reduce the degree of
instability and clearly a range of behavior is observed. The
deterministic conclusion that increasing o will necessarily
result in a decrease or an increase in the degree of
instability is therefore not valid and a stochastic analysis
is warranted.

3.2. Effect of oy on Output Variables

3.2.1. Concentration Distributions

[25] Figure 8 shows the effect of o, on the mean
concentration distribution at two elapsed simulation times
2.63 and 15.63 years (mean concentration profiles pertain-
ing to three values of oy = 0.1, 0.4 and 0.6 are shown in
addition to the homogeneous case o, = 0). When the degree
of heterogeneity is small (i.e., o, — 0) the “mean” system
behavior approaches that of the homogeneous case. As oy
increases, the deviation of the mean concentration profile
from the homogeneous case becomes significant. At earlier
times, an increase in oy creates preferential flow paths that
cause enhanced fingering as evidenced by an additional
central finger. However, at later times greater oy is asso-
ciated with subdued fingering where increased heterogene-
ity is responsible for finger “smearing” as a result of greater
dispersive mixing.

[26] Figure 9 shows the effect of various o, on the
standard deviation of concentration distribution at simula-
tion times of 2.63 and 15.63 years. It is seen that as oy
increases the standard deviation of the concentration field
also increases (as observed by the increasing areas enclosed
by different contour levels). An interesting observation is
that the uncertainty in the concentration field is typically
higher in the middle of the plume than at its edges. This is
explained by the fact that fingers, which develop more
casily at outer boundary edges [Wooding et al., 1997a,
1997b; Simmons et al., 1999] are dominant and persistent.
These fingers are present in most cases and are typically
able to overcome the permeability distribution provided that
the permeability in their vicinity is not too low. Conversely,
internal fingers may be present in some conducive realiza-
tions and not in others. Hence, greater variability in finger-
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Figure 6. Concentration plots at elapsed time 10.63 years for realizations rz8 (left panels) and rz/5

(right panels) with standard deviations of (a) oy =
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0.1, (¢c) oy = 0.4, and (d) oy

= 0.6. Corresponding permeability fields have identical p, = —12.315; T = 100 m and anis = 0.3.

ing occurs in the interior of the plume than at its outer
edges.
3.2.2. Nusselt Number (Nu)

[27] Figure 10a shows the effect of o, on the mean
Nusselt number (pny,). It is seen that pn, increases with

increasing oy until about 5 years (the time it takes in the

homogeneous case and for the “mean” plume in heteroge-
neous case to reach the bottom of the system). Beyond this
time, pnu decreases with increasing oy. Increasing the
degree of heterogeneity provides a greater opportunity for
preferential flow. Initially the degree of instability is greater

with larger o, and thus an increase in py is noted (the
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Figure 7. The time variation of output variables: the maxima for the simuation set 7g3sd/ (o, = 0.1)
and the minima of the simulation set rg3sd4 (o, = 0.6). Solid lines represent maxima, and dashed lines
represent minima. The maxima of all variables of set rg3sd/ (lower o) are always greater than the
corresponding minima of the set 7g3sd4 (higher o). The mean (py = —12.315) and the correlation length

(Tx = 100 m) are constant for both sets.
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homogeneous case gives the lowest pn, at the minima). solute fluxes than is typical for the heterogeneous realiza-
However, at later times increased heterogeneity promotes tions.
dispersive mixing and causes a reduction in pn,. The [28] It is observed from the oy, versus time graph in

homogeneous system is therefore able to maintain higher Figure 10b that an increase in o, always results in an
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increase in ony. For any degree of heterogeneity (o) some
realizations may be highly conducive to instability, while
others may be moderately conducive or even unconducive,
depending upon the local distribution of high- and low-
permeability zones near the upper (solute source) boundary.
Thus differences in Nu responses of individual fields will be
higher for higher values of o and vice versa. This explains
the increase ino, with increasing o.

[29] The temporal variation of oy, in Figure 10b shows
two interesting features: (1) oy, increases with time to
reach a maximum and then decreases and (2) as oy
increases, the time at which the maximum in oy, iS
observed is correspondingly earlier (for oy, = 0.1 the
maximum value of on, occurs at about 3 years, whereas
for oy = 0.6, the maximum value of o, occurs at about 0.1
years). This can be explained as follows. Initially all
realizations are at the same state. With increasing time,
some of the more conducive realizations become unstable
and experience higher values of Nu, while others are
relatively more (or completely) stable in their behavior.

Thus the process of instability causes differences in
response among the individual realizations. The instability
grows with time until it reaches a maximum. As concen-
tration gradients are reduced within the flow system the
instability process is then dissipated by dispersive/diffusive
processes. The gradual return to stability at later times
reduces the solute flux across the upper boundary and the
difference among realizations (with respect to Nu) is con-
sequently reduced. Hence o, increases with time, reaches
a maximum and then decreases. With larger o, greater
differences in Nu responses occur and also occur corre-
spondingly earlier owing to the earlier onset of instability in
the more conducive realizations. However, the decay/mix-
ing process also sets in earlier. This causes maxima in ony
to occur progressively earlier with time for increasing
values of ay.
3.2.3. Solute Present (SP)

[30] Figure 11a depicts the effect of oy on pgp. It is seen
that increasing oy, causes an increase in pgp. This increase in
psp due to an increase in oy continues until about 10 years.
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Variation of (a) the mean of the solute present psp and (b) the standard deviation of the

solute present ogp with time for different values of standard deviation (of log k) o.

Beyond this time, there is little change in pgp with increas-
ing o,. Higher oy results in a higher degree of initial
instability and thus higher oy is associated with higher
psp. As time passes the aquifer progressively fills with
solute. Thus at later times all systems with different oy
approach similar values of pgp with the contrast between
realizations progressively diminishing. At later times there
is little, if any, impact on pgp caused by oy.

[31] The effect of oy on ogp is shown in Figure 11b.
There are two main observations here: (1) an increase in oy
causes an increase in ogp and (2) ogp increases with time
and attains a constant value around 9 years. An increase in
osp is expected to occur with an increase in o,. However, a
direct plot of ogp with o, would show a near linear increase
in ogp with increasing oy,. One possible reason for this
behavior is that because SP is a space averaged variable, the

uncertainty (o) in the input is linearly transferred to the
uncertainty (osp) in the output. The temporal variation of
ogp is explained as follows. Initially differences among
individual responses increase because of the increasing
difference between the rate of solute accumulation in two
groups of realizations: (1) high rates of solute accumulation
in highly conducive realizations and (2) low rates of solute
accumulation in less conducive realizations. This continues
until around 9 years. Therefore, ogp increases until around 9
years. The difference among the responses of individual
realizations becomes constant by about this time. The most
plausible explanation for this behavior is that unstable
realizations have similar solute contents (SP), as they are
almost filled up; while those not so conducive realizations
also have similar (but significantly lower than the former)
solute contents (SP) due to very slow mass accumulation in
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them. Thus the difference between two groups (at later
times) is a difference between two states: the extensively
penetrated plumes which have reached the bottom and the
stable plumes that do not move far from the top boundary.
These two states do not significantly change with increasing
time. Thus ogp stabilizes at around 9 years.

3.2.4. Center of Gravity of the Plume (CGP)

[32] Figure 12a shows the effect of o, on pcge It is
observed from this figure that an increase in heterogeneity
causes: (1) an increase in pcgp at times earlier than about 5
years and (2) a decrease in pcgp at later times. At earlier
times, the higher degree of heterogeneity causes a higher
degree of fingering instabilities due to the presence of larger
preferential flow paths. This causes a greater downward
movement of mass. This explains why a higher degree of
heterogeneity causes an increase in pcgp at earlier times.
However, an increase in the degree of heterogeneity (oy) as
explained earlier, promotes spreading and dispersive mixing
at later times. Because of this spreading, concentration

gradients are reduced and the growth of pcgp with an
increase in oy is retarded. Thus larger oy results in smaller
Rcegp growth at later times. A slight decrease is observed in
pcgp for the homogeneous and mildly heterogeneous
systems at later times. In these systems, pcgp has already
reached a maximum value as the heavier portion of the
plume has already touched the bottom. When mass contin-
ues to build up in the plume, it will accumulate on the top of
the mass already present, thereby pushing CGP back
upwards. Thus pcgp is slightly reduced. On the other hand,
Regp continues to increase with time in the case of a highly
heterogeneous system, albeit very slowly because pcgp has
not yet reached a maximum.

[33] Figure 12b shows the effect of oy on ocgp Two
main observations here are (1) an increase in o causes an
increase in ocgp and (2) ocgp first increases with time,
reaches a maximum and then starts decreasing for all values
of oy. The larger ocgp associated with increasing oy is due
to the greater contrast between CGP responses among
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different realizations. The temporal variation of ocgp is
explained as follows. It has been observed and previously
discussed that an increase in oy increases the degree of
instability in conducive realizations at earlier times. This
means that individual differences in CGP are higher at early
times hence the growth rate of ocqgp is higher at earlier
times. At later times, systems begin to stabilize and the
associated uncertainty reduces. Thus the rate of growth of
ocgp reduces and a plateau in the graph is observed.

3.2.5. Penetration Depth of the 0.6 Contour (PD)

[34] Figure 13a shows the relationship between o, and
ppp. It is observed from Figure 13 that an increase in oy
causes an increase in ppp at times earlier than 9 years and a
decrease in ppp at later times. Higher oy means that the
contrast between the lower permeability and higher perme-
ability zones is greater. Due to this contrast, the existence
and the growth of an isolated deep finger is more likely to
occur in a heterogeneous system than a homogeneous one at
carlier times. At later times, heterogeneity promotes dis-

persive mixing which explains the reduction in ppp with
increasing oy. An interesting feature of Figure 13a is that as
oy increases the curve becomes steeper, showing very high
initial growth and a later flattening compared to the homoge-
neous case. This is because on average highly heterogeneous
systems are more unstable initially than less heterogeneous
ones. It is again consistent with earlier observations of the
other instability indicators.

[35] The effect of oy on opp in Figure 13b shows that (1)
an increase in oy causes an increase in opp, (2) opp
increases with time, reaches a maximum then decreases,
and (3) the time at which the maximum in each case occurs is
correspondingly earlier with increasing oy. It is also
observed that opp is not a linear function of oy. Linearity
should not be expected here because PD is not a space
integrated variable like SP or CGP. It does not depend upon
or “feel” the entire field but rather samples a very small
subset of it. The temporal variation of opp is explained as
follows. Systems that are more conducive to finger growth,
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will experience larger growth of isolated fingers than sys-
tems which are less conducive. With increasing time, the
contrast among responses of individual realizations
increases. This is why a peak in opp is observed. After that
time, when the most conducive realization in any set has
reached its maximum PD value, progressively more realiza-
tions will approach similar values. This reduces differences
among responses of individual realizations and thus opp
reduces with time. The larger oy is, the more effective
preferential flow paths become. This reduces the time for
fingers to reach a certain-depth. Therefore, it is found that the
maximum opp occurs earlier for a highly heterogeneous
system when compared to less heterogencous ones. The
reason for a decrease in opp after it reaches a maximum is

that after the time when the most conducive realization in
any set has reached its maximum PD value, progressively
more and more realizations will approach similar values.

3.3. Effect of T, on Output Variables

[36] For the sake of brevity we discuss the effect of T, on
only one output variable, Nu. For the effect of T, on other
variables, we will combine the discussion at the end of this
section without giving their individual results since similar
descriptions apply to all.

3.3.1. Nusselt Number (Nu)

[37] It is observed from the pny Versus Ty graph in Figure
14a that as T, increases pn, decreases for all time. The
decrease in pn, implies a reduction in the degree of
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instability. Therefore, an increase in T, appears to promote
stability. Similar conclusions were reached by Schincariol et
al. [1997]. An increase in T, implies longer and more
continuous zones of high and low permeability. With a larger
Ty, lower permeability zones are more effective in dampen-
ing the upward and downward motions associated with a
convecting fluid, both of which are necessary to promote and
maintain the growth of instability. Therefore, an increase in
T, causes a reduction in the degree of instability (albeit very
small). Another possible reason for the decrease in the
degree of instability with larger T, may be related to the
likelihood of the dense plume “seecing’ high- or low-
permeability zones at the upper boundary. If T, is smaller,
the probability of the top boundary interacting with a higher
permeability zone is more than when Ty is larger. It should,
however, be noted that pn, is not very sensitive to Ty. An
increase in T, from 40 m to 150 m (an increase of 270%)
causes a maximum decrease in pny, by just 11.8% at 20 years
and much less than this at earlier times.

[38] The variation of on, With Ty in Figure 14b shows
that an increase in T, causes an increase in on,. The rate of
increase of o, with respect to Ty is higher at earlier times
than at later times. This is due to the probability of the dense
plume ““seeing” a high- or low-permeability zone near the
top boundary. For larger T, one might imagine either a
laterally extensive sand or clay layer underlying most of the
dense plume source. This results in either very unstable or
weakly unstable to stable plumes in different realizations at
earlier times. Resultant Nu therefore tend to differ more,
which results in a correspondingly higher on,. With smaller
Ty, @ combination of high- and low-permeability zones is
more likely to intersect the top solute source boundary and
individual realizations tend to be similar in their Nu
responses. Thus a decrease in oy, results with a reduction
in T,. Due to stabilization of all systems at later times,
irrespective of the magnitude of T, Nu responses of differ-
ent realizations decrease. Therefore the rate of increase of
ona With respect to T, is retarded.

3.3.2. Effect of T, on the Other Indicator Variables

[39] A slight degree of reduction in the extent of fingering
was observed from the mean concentration plots with
increasing T,. However, the mean and the standard devia-
tion of the concentration distribution were relatively insen-
sitive to changes in correlation length. Results were difficult
to interpret visually since the mean and the standard devia-
tion profiles of concentration distribution corresponding to
two consecutive values of T, appeared very similar. The
difficulty in visually interpreting effects of changes in T4 on
the mean and standard deviation of concentration distribu-
tion justifies the need for use of variables like SP and CGP
which can be interpreted quantitatively.

[40] An increase in T, caused a decrease in pgp at earlier
times and caused an increase in pgp at later times. However,
neither the initial decrease nor the later increase in pgp with
T, was large. A change in T, from 40m to 150m (an
increase of 275%) produced a maximum reduction of only
2% in pgp at 4.63 years simulation time and produced a
maximum increase of only 7.34% at 20 years. The effect of
an increase in pgp caused by increasing T, at later times is
opposite to that seen in other variables. With the exception
of SP, the magnitude of other indicator variables are largely
determined by conditions near the top boundary alone. SP is
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determined by both upper and lower boundary conditions.
One possible explanation for this behavior may be that an
increase in Ty causes an increase in the mass build up at
later times by a net reduction in mass outflow from the
bottom boundary. The increase in T4 causes instabilities to
be dampened and a reduction in solute mass leaving the
system through the bottom boundary since a smaller number
of plumes reach the bottom at later times. Although the
mass influx at the source may itself be reduced with an
increase in Ty, the mass leaving the system through the
bottom boundary may be reduced to a greater degree
(concentration gradients driving diffusion through the bot-
tom boundary are lower than that at the top; flux magni-
tudes at the bottom boundary are always notably lower than
at the top boundary).

[41] An increase in T, caused an increase in ogp for all
time which is expected because an increase in Ty implies
greater variability in individual responses of realizations due
to greater contrasts among them as explained earlier. An
increase in T, caused a decrease in pcgp, again consistent
with its stabilizing effect. An increase in T, caused an
increase in ocgp at earlier times, but had little effect at later
times. An increase in ocgp With an increase in T, is
expected because an increase in T, implies greater varia-
bility in individual responses of realizations due to greater
contrasts among them which is more significant at earlier
times than at later times.

[42] An increase in Ty reduced ppp for all time again
consistent with stabilization of solute transport processes.
However, ppp was not very sensitive to the changes in Ty.
A 275 % increase in T (from 40 m to 150 m) produced a
maximum reduction of 11.75% at about one year. An
increase in T, caused a general increase in opp. However,
the maximum overall increase in opp was 34.2% at 8.63
years simulation time when T, increased from 40 m to 150
m (a 275% increase). An interesting observation was the
maxima in opp curves at T, ~ 100 m at later times (greater
than about 11 years). This may be related to the ratio of T
to the length of top solute source boundary but clearly
warrants further investigation.

3.4. Effect of p, on Output Variables

[43] Due to qualitative similarities in the results and their
causes, only a typical result showing the effect of ., on both
ppp and opp is given (Figure 15). This and other results
showed that as p, increased there was virtually no change in
the mean and standard deviations of output variables until a
critical value of about py, ~ —13.3 was reached. For values
of py higher than this apparent critical value, there was a
rapid increase in the mean and standard deviations of all
output variables. The lower (subcritical) p, appears to be
consistent with diffusive/dispersive transport and the general
absence of instability. Changing permeability (py) in this
stable range has little effect on the diffusive/dispersive
transport. A rapid increase in the mean and standard devia-
tions of output variables beyond the critical value for p is
consistent with the onset of instability as free convection
then becomes the dominant mode of solute transport.

[44] It is useful to comment on the critical value of
(~ —13.3). Although there is clearly a range over which
transition from stable to unstable behavior appears to occur,
it is interesting to note that this critical py is equivalent to
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Figure 15. Variation of (a) the mean of the penetration depth (of 0.6 contour) ppp and (b) the standard
deviation of the penetration depth with the mean (of log k) py for different elapsed times.

the average permeability of 4.8 x 10~'* m? corresponding
to a notional Rayleigh number, Ra,, = 40. This Rayleigh
number is identical to the critical Rayleigh number docu-
mented for the homogeneous case [Elder, 1967a]. This
gives the impression that the onset of instability can be
predicted by the Ra,4y (based upon the average permeabil-
ity). However, it is clear that the high degree of uncertainty
associated with the output variables restricts the usefulness
of Ra,y as a predictor of instability in heterogeneous cases
as will be discussed in the following section.

3.5. Rayleigh Number as a Predictor of Instability in
Heterogeneous Systems

[45] This study has shown how heterogeneity (i.e., oy, Ty)
play an important role in controlling the growth and decay

of instabilities. These results do not address a central issue
of prediction of instability in heterogeneous systems. The
issue of predictive validity of Ra in heterogeneous systems
was addressed by conducting stochastic experiments at a
lower than critical py (~ —13.315; Rayy ~ 40) value of py
= —13.917 (Ra4y ~ 10) for different values of oy. For one
arbitrarily selected simulation set m4sd4 from this experi-
ment with oy = 1.2, realizations showing the minimum and
maximum values of PD at selected elapsed times were
identified. Results clearly demonstrated that a high degree
of heterogeneity is capable of triggering instability even at a
subcritical py (and therefore subcritical Ra,y). Thus, given
results presented so far, it is clear that the Rayleigh number
based upon average permeability could not be expected to
adequately predict the onset of instability in a heteroge-
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Figure 16. Variation of (a) the mean of the penetration depth (of 0.6 contour) ppp and (b) the standard
deviation of the penetration depth (of 0.6 contour) opp with the standard deviation (of log k with a lower

mean) o, for different elapsed times.

neous system. Furthermore, it provides no information
about the temporal development of instabilities once they
are generated i.e., growth and/or decay rates which are
clearly important in the analysis of the dense plume problem
in heterogeneous porous media.

[46] A typical stochastic result showing the effect of o,
(at a lower py) on PD is shown in Figure 16. It is observed
from this and other results (not given here) that as oy is
increased, there is an increase in the mean and standard
deviations of all output variables at all times. However, an
increase in the mean and standard deviation are not signifi-
cant unless oy reaches a critical value of about 0.8. Below
this value of oy, the mean values of variables remain close

to the homogeneous values. This is because most realiza-
tions are stable and the dominant mode of solute transport is
diffusion. An increase in o, beyond 0.8 causes a significant
increase in the mean values of variables. This occurs
because some realizations even at this low py (Ray = 10)
now become unstable, thereby increasing the mean values
of variables. The onset of instability in some realizations
causes increasing differences among responses of different
realizations (with increasing o), which leads to increasing
standard deviations of output variables.

[47] It has been seen in the preceding section describing
the effect of py on the output variables that for a constant oy,
(0.4), there is a critical mean (py ~ —13.315; Ra,y ~ 40)
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Figure 17. Variation of the probability of exceedence of the homogeneous penetration depth (of 0.6
contour) Pypp with time for different values of standard deviation (of log k) o, for (a) a higher mean p, =

—12.315 and (b) a lower mean p, = —13.917.

around which instability takes place. Here it is seen that for a
constant subcritical mean (py = —13.917; Ra,y ~ 10) there
is a certain critical value of heterogeneity (oy ~ 0.8) around
which instability can take place. These results together lead
to a hypothesis that every value of p, may have an associated
critical oy, at which instability can take place and vice versa.
The upper bound for the critical py occurs when oy is zero.
Simply, this is to say that it is possible to observe instability
at a less than critical mean permeability (critical Ra for
homogeneous case), provided that there is a sufficient
amount of heterogeneity present in the system.

3.6. Risk Analysis: The Probability of Exceedence
Caused by Homogeneous Assumptions

[48] Risks are best described by the probability of
exceedence of a particular value of an output variable of

interest, given a certain degree of uncertainty in input
parameters. The value of the probability of exceedence of
Nu and PD were calculated relative to the corresponding
homogenous case value of the variable. In other words, if
we were to use a homogeneous model with equivalent
average permeability, what is the likelihood we would
underestimate an output variable such as PD or Nu? This
helps to understand the implications of making an assump-
tion about homogeneous conditions applying when hetero-
geneous conditions actually exist.

[49] The temporal variation of probability of exceedence
of PD, Pypp for different values of oy at higher p, =
—12.315 (Ra 4y = 400) and lower py = —13.917 (Ra 4= 10)
are given in Figures 17a and 17b. Although the temporal
variation of Pypp is complex, there are some clear trends in
Pypp with time both at higher and lower py. In case of the
higher py, Pypp is generally a maximum at elapsed times
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Figure 18. Calculated correlation coefficient ¢ versus time for each of the coupled pairs. Permeability
field statistical parameters are p, = — 12.315; o, = 0.6; Ty = 100 m and anis 0.3

less than about 5 years and a minimum at around 9 years.
Pypp increases with time after about 9 years and stabilizes
around 13 years. This is consistent with earlier observations
of variations of these variables. Instabilities increase ini-
tially with time. At around 5 years instabilities are at a
maximum. Therefore, this is the time interval around which
a larger number of heterogeneous realizations have higher
values of PD than in the homogeneous case. Gradually the
degree of instability decreases. By around 9 years, highly
unstable realizations begin to stabilize but this is also true of
the homogeneous system. This brings the homogeneous
behavior and the behavior of most heterogeneous realiza-
tions closer and therefore Pgpp is @ minimum at about this
time. In the heterogeneous case there may be late starters
(initially not so conducive realizations), which may pro-
gressively become moderately to highly unstable beyond
about 9 years in increasing numbers. PD in the homoge-
neous case also reduces slightly due to accumulation of
mass in fingers. These cause Pypp to increase. However, by
about 13 years there are no new late starters and it is likely
that those that can move faster than in the homogeneous
equivalent are already doing so. This causes Pypp to
stabilize.

[50] For lower py, Pypp is @ maximum at earlier times
and continuously decreases for all values of o,. While the
homogeneous case is fully stable, in many heterogeneous
realizations fingers, however small, may initially grow. The
number of heterogeneous realizations, where PD is higher
than the homogeneous case, may be higher initially as
heterogeneity promotes instability at early times. With time,
in many realizations initial fingers may die out by diffusion/
dispersion and thus Pypp decreases with time. However, at
later times (greater than about 13 years) some more con-
ducive realizations may start showing unstable behavior
after the accumulation of a sufficiently dense brine layer
near the upper boundary. This again increases Pypp.

[51] It follows from the results presented in Figure 17 that
we are likely to underestimate PD in 80 to 95% of cases at
earlier times (less than about 5 years) and in 20 to 50%
cases at later times (greater than about 9 years) at a higher
mean. For a lower (subcritical) mean, PD is underestimated

in 70 to 97% cases at earlier times and in 70 to 87% cases at
later times. Risks are considerably high in the case of
systems expected to be unstable as predicted by a mean
permeability (Ra, = 400), but even higher in supposedly
stable systems as predicted by a mean permeability (Ra,y =
10). Results clearly show that the risk involved in the case
of a low-permeability field with a higher degree of
heterogeneity (oy) is greater than the risk associated with
a high-permeability field with a lower degree of hetero-

geneity (o).

3.7. Correlation Between Output Variables

[52] The interrelationship between different output varia-
bles was investigated by determining correlation coeffi-
cients between output variable pairs. These are denoted by
(1) Nu_SP, (2) Nu CGP, (3) Nu_PD, (4) SP_CGP, (5)
SP_PD and (6) CGP_PD. Figure 18 gives the calculated
correlation coefficient versus time for each of the coupled
pairs for simulation set rg3sd4 (py= —12.315; oy = 0.6; T, =
100 m and anis = 0.3). It is apparent that (1) all correlation
coefficients are positive at all times, i.e., output variables are
positively correlated for all time and for all values of input
variables and (2) the magnitude of correlation coefficients
are not constant with time. At earlier times, all correlation
coefficients are very high (>0.8) but decrease with time
with the lowest correlation observed at later times between
Nu and SP. This implies that except for at early times, one
output variable cannot be determined from knowledge of
another with a high degree of confidence. This serves as
additional justification for the use of a number of indicator
variables, especially in light of the transient nature of the
processes under consideration.

4. Summary and Conclusions

[s3] It is clear from the results of this study that hetero-
geneity plays two mutually opposing time-dependent roles
in controlling convective instabilities. It serves as the
triggering mechanism and therefore promotes instabilities
at early times but tends to dissipate them at later times by
enhancing dispersive mixing. A visual examination of dense
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plume behavior in statistically equivalent permeability
fields showed that dense plume migration rates and path-
ways were significantly different and that a stochastic
analysis of a larger number of realizations was warranted.
A number of quantitative indicators were employed to
analyze the outputs including concentration distributions,
Nusselt numbers, solute present in the system, center of
gravity of plume and penetration depth of fingers.

[54] The main conclusions from the study are the
following.

1. An increase in the standard deviation of the log
permeability field causes an increase in the degree of
instability at earlier times but promotes stability at later times.

2. An increase in the horizontal correlation length of the
log permeability field (creates laterally extensive low-
permeability zones that dissipate upward and downward
motions needed to maintain convection) causes a decrease in
the degree of instability at all times, as indicated by a
reduction in mean values of output variables. However, in
comparison to the effect of mean and standard deviation of
the log permeability field, processes appear relatively
insensitive to correlation length of the distribution.

3. An increase in the mean of the log permeability field
causes an increase in the degree of instability at all times, as
shown by a consistent increase in the mean values of output
variables.

4. Increasing the standard deviation, correlation length
and the mean of the log permeability field cause an increase
in the degree of uncertainty of predictions as indicated by the
higher standard deviation of output variables. The temporal
trends in the standard deviations of the different output
variables are complex.

5. The traditional Rayleigh stability criterion based upon
an average permeability is inadequate for describing solute
transport processes in heterogeneous systems. Results show
that instability can occur at a subcritical mean of the log
permeability field (and hence subcritical Rayleigh number)
where sufficient heterogeneity associated with larger field
standard deviation exists.

6. Probability of exceedence analysis has shown that
analyses based upon homogeneous assumptions will typi-
cally underestimate, often significantly, the value of key
output variables where heterogeneous conditions actually
exist. This has significant implications for modeling and
prediction of dense plume pathways and migration rates in
heterogeneous porous media.

7. Correlation coefficients between output indicators were
positive at all times. The magnitude of these coefficients
were, however, seen to be time dependent. At earlier times,
all correlation coefficients were very high (>0.8). All
correlation coefficients decreased with time, with the lowest
correlation at later times observed between Nu and SP. This
serves as additional justification for the use of a number of
indicator variables, especially in light of the transient nature
of the processes under consideration.

[55] While general “cause and effect” trends are clear
from the results of this study, problems still exist. The
precise nature of the quantitative relationship between
instability onset, as well as subsequent growth or decay,
and the nature of heterogeneity (e.g., magnitude, geometry)
requires elucidation. Although the results of our study agree
with the results of Schincariol et al. [1997], other system
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geometries and boundary conditions could be studied to
determine whether these results are indeed generalizable.
Furthermore, difficulties remain as to how to predict the
migration rates and pathways of a dense contaminant plume
in field settings, where heterogeneity may not be adequately
quantifiable. A stochastic analysis may permit boundaries
on the likely range of behavior to be determined but
prediction of more precise rates and pathways consistent
with the single field realization is currently not possible.
Other questions remain in order to address these issues and
include: at what scale must we resolve heterogeneity in field
settings to adequately predict and model solute transport
processes? What level of simplification in the detail of
heterogeneity is permissible before we no longer model
the real system? How do we incorporate key characteristics
of the heterogeneous permeability field into predictive
stability criteria? These are just some unanswered questions
that warrant further investigation.

Notation

AC concentration difference as mass fraction

between source (upper) and sink (lower)

boundaries (MM ™).

Ty horizontal correlation length (L).

Ty vertical correlation length (L).

y stazndard deviation of the random variable Y

(L5).

kinematic viscosity of the fluid (L*T~").

ratio of vertical length to horizontal correla-

tion length

C fluid concentration expressed as a mass

fraction (MM ).

center of gravity of the plume at a particular

time (L).

apparent molecular diffusivity of solutes in a

porous medium (L*T ™).

g acceleration due to gravity (LT ?).

H depth of the porous layer or model domain
(L).

k intrinsic permeability (L?).

Lg length of the source boundary (L).

number of Monte Carlo simulations.

Nusselt number at a particular time (dimen-

sionless).

P probability of exceedence of the value of a

variable in case of the corresponding

homogeneous system at a particular time

(dimensionless).

penetration depth of 0.6 concentration con-

tour at a particular time (L).

probability of exceedence of the variable PD

(dimensionless).

O solute flux rate (MT ).

Ra is the Rayleigh number of solutes (dimen-
sionless).

Vo = K/po
anis = Ty/Tx

CGP

PD

PHPD

Rany is the average Rayleigh number for a
heterogeneous system.
SP is a quantity proportional to the amount of
solute present in the aquifer at a particular
time (L).
T time (T).
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W width of the source boundary (L).

X, Y, Z axes names in a Cartesian coordinate
system.
X, Y, z spatial coordinates (L).

Y random variable and equals log of the
permeability, k (L?).

Ax horizontal length of a finite element or
cell (L).

Ay is the vertical length of a finite element
or cell (L).

Ap density contrast between the solute
source and the underlying groundwater
(ML™).

ar transverse dispersivity of the porous
medium (L).

B =po'(@p/OC)

coefficient of density variability (dimen-
sionless).

e porosity (dimensionless).
p fluid dynamic viscosity (M (LT)™").
pcgp mean of the variable CGP at a particular
time (L).
pau mean of the Nusselt number at a
particular time (dimensionless).
ppp mean of the variable PD at a particular
time (L).
psp mean of the variable SP at a particular
time (L).
Wy mean of the random variable Y = log k
(L5).
p fluid density (ML ).
0o fluid density (ML™>) at base concentra-
tion C, (MM ™).
ocgp Standard deviation of the variable CGP
@)
one Standard deviation of the Nusselt number
(dimensionless).
opp standard deviation of the variable PD
L)
osp standard deviation of the variable SP (L).
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