274 research outputs found

    Molecular Gas and Star Formation in Nearby Disk Galaxies

    Get PDF
    We compare molecular gas traced by ^(12)CO (2-1) maps from the HERACLES survey, with tracers of the recent star formation rate (SFR) across 30 nearby disk galaxies. We demonstrate a first-order linear correspondence between Σ_(mol) and Σ_(SFR) but also find important second-order systematic variations in the apparent molecular gas depletion time, τ_(dep)^(mol) = ∑_(mol)/∑_(SFR). At the 1 kpc common resolution of HERACLES, CO emission correlates closely with many tracers of the recent SFR. Weighting each line of sight equally, using a fixed α_(CO) equivalent to the Milky Way value, our data yield a molecular gas depletion time, τ_(dep)^(mol)= ∑_(mol)∑_(SFR) ≈ 2.2 Gyr with 0.3 dex 1σ scatter, in very good agreement with recent literature data. We apply a forward-modeling approach to constrain the power-law index, N, that relates the SFR surface density and the molecular gas surface density, ∑_(SFR) ∝ ∑_(mol)^N. We find N = 1 ± 0.15 for our full data set with some scatter from galaxy to galaxy. This also agrees with recent work, but we caution that a power-law treatment oversimplifies the topic given that we observe correlations between τ_(dep)^(mol) and other local and global quantities. The strongest of these are a decreased τ_(dep)^(mol) in low-mass, low-metallicity galaxies and a correlation of the kpc-scale τ_(dep)^(mol) with dust-to-gas ratio, D/G. These correlations can be explained by a CO-to-H_2 conversion factor (α_(CO)) that depends on dust shielding, and thus D/G, in the theoretically expected way. This is not a unique interpretation, but external evidence of conversion factor variations makes this the most conservative explanation of the strongest observed τ_(dep)^(mol) trends. After applying a D/G-dependent α_(CO), some weak correlations between τ_(dep)^(mol) and local conditions persist. In particular, we observe lower τ_(dep)^(mol) and enhanced CO excitation associated with nuclear gas concentrations in a subset of our targets. These appear to reflect real enhancements in the rate of star formation per unit gas, and although the distribution of τ_(dep) does not appear bimodal in galaxy centers, τ_(dep) does appear multivalued at fixed Σ_(H2), supporting the idea of "disk" and "starburst" modes driven by other environmental parameters

    Variations in the Star Formation Efficiency of the Dense Molecular Gas across the Disks of Star-Forming Galaxies

    Get PDF
    Date of Acceptance: 15/05/2015We present a new survey of HCN(1-0) emission, a tracer of dense molecular gas, focused on the little-explored regime of normal star-forming galaxy disks. Combining HCN, CO, and infrared (IR) emission, we investigate the role of dense gas in Star Formation (SF), finding systematic variations in both the apparent dense gas fraction and the apparent SF efficiency (SFE) of dense gas. The latter may be unexpected, given the popularity of gas density threshold models to explain SF scaling relations. We used the IRAM 30-m telescope to observe HCN(1-0) across 29 nearby disk galaxies whose CO(2-1) emission has previously been mapped by the HERACLES survey. Because our observations span a range of galactocentric radii, we are able to investigate the properties of the dense gas as a function of local conditions. We focus on how the IR/CO, HCN/CO, and IR/HCN ratios (observational cognates of the SFE, dense gas fraction, and dense gas SFE) depend on the stellar surface density and the molecular/atomic ratio. The HCN/CO ratio correlates tightly with these two parameters across a range of 2.1 dex and increases in the high surface density parts of galaxies. Simultaneously, the IR/HCN ratio decreases systematically with these same parameters and is ~6-8 times lower near galaxy centers than in the outer regions. For fixed line-mass conversion factors, these results are incompatible with a simple model in which SF depends only on the gas mass above some density threshold. Only a specific set of environment-dependent conversion factors can render our observations compatible with such a model. Whole cloud models, such as the theory of turbulence regulated SF, do a better job of matching our data. We explore one such model in which variations in the Mach number and in the mean density would respectively drive the trends within galaxy disks and the differences between disk and merging galaxies (abridged).Peer reviewe

    Über Petrus Collivaccinus von Benevent

    No full text
    n/

    Slijepčević, Djoko: Die bulgarische orthodoxe Kirche 1944-1956

    No full text
    corecore