14 research outputs found

    Biodiversity and agriculture: rapid evidence review

    Get PDF
    Agriculture is the largest single source of environmental degradation, responsible for over 30% of global greenhouse gas (GHG) emissions, 70% of freshwater use and 80% of land conversion: it is the single largest driver of biodiversity loss (Foley et al. 2011, 2005; IPBES 2019; Willett et al. 2019). Agriculture also underpins poor human health, contributing to 11 million premature deaths annually. While too many still struggle from acute hunger, a growing number of individuals, including in low and middle-income countries (LMICs), struggle to access healthy foods. Greater consideration for, and integration of, biodiversity in agriculture is a key solution space for improving health, eliminating hunger and achieving nature-positive development objectives. This rapid evidence review documents the best available evidence of agriculture’s relationships with biodiversity, drawing on the contributions of leading biodiversity experts, and recommends actions that can be taken to move towards more biodiversity/nature-positive production through the delivery of integrated agricultural solutions on climate, biodiversity, nutrition and livelihoods. The analysis, which takes a whole-of-food-system approach, brings together a large body of evidence. It accounts for aspects not typically captured in a stand-alone primary piece of research, and indicates where there are critical gaps

    Floodplain Polygenesis: from Geomorphic Construction to Forest Pattern

    No full text
    International audienc

    Adaptive Governance and Resilience: The Columbia River Basin

    No full text
    Poster presentation given at an American Geophysical Union conference. | American Geophysical Union Poster | 201

    Adaptive Governance and Resilience: The Columbia River Basin

    No full text
    Conference paper presented at a American Geophysical Union conference. | American Geophysical Union | 201

    Woody Vegetation Increases Saturated Hydraulic Conductivity in Dry Tropical Nicaragua

    No full text
    Land conversion in the tropics from primary forest to agricultural land has altered soil hydrologic processes. Woody vegetation is known to increase infiltration rates and saturated hydraulic conductivity (KS) in primary forests compared with agricultural land, but it is less clear if this relationship holds for a gradient of woody vegetation. In addition, the mechanisms for the effect of woody vegetation on KS have yet to be fully examined. To quantify the effect of woody vegetation structure on vadose zone hydrology, we estimated KS in 15 plots across a dry tropical riparian vegetation gradient in Nicaragua, taking into account covariates such as soil properties and livestock impact. Using single linear regression, we found that leaf area index (LAI) had the greatest correlation coefficient of 0.331 to KS, followed by hoofprint density (0.291) and clay content (0.291). Furthermore, the relationship between LAI and KS was greater for finer soils than for coarser soils. We found that a forest soil had eight times more preferential flow paths than a pasture soil, and most of these were root‐initiated flow paths, suggesting a possible mechanism for the positive correlation between LAI and KS. We show that the KS predictions with a pedotransfer function could be improved by incorporating LAI. Our findings support the importance of preserving woody vegetation in key areas on the landscape to maintain hydrologic functions of tropical soils and ecosystems
    corecore