11 research outputs found

    Single Femtosecond Laser-Pulse-Induced Superficial Amorphization and Re-Crystallization of Silicon

    Get PDF
    21 pags., 9 figs., 1 tab. -- This article belongs to the Special Issue Advanced Pulse Laser Machining TechnologySuperficial amorphization and re-crystallization of silicon in and orientation after irradiation by femtosecond laser pulses (790 nm, 30 fs) are studied using optical imaging and transmission electron microscopy. Spectroscopic imaging ellipsometry (SIE) allows fast data acquisition at multiple wavelengths and provides experimental data for calculating nanometric amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. For a radially Gaussian laser beam and at moderate peak fluences above the melting and below the ablation thresholds, laterally parabolic amorphous layer profiles with maximum thicknesses of several tens of nanometers were quantitatively attained. The accuracy of the calculations is verified experimentally by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). Along with topographic information obtained by atomic force microscopy (AFM), a comprehensive picture of the superficial re-solidification of silicon after local melting by femtosecond laser pulses is drawn.C.F. acknowledges the support from the European Commission through the Marie Curie Individual Fellowship—Global grant No. 844977 and funding from the Horizon 2020 CellFreeImplant European project. D.F., M.D., S.S., A.H. and U.B. gratefully acknowledge the funding from the German Central Innovation Program (AiF-ZIM) under grants No. ZF4044219AB7 and ZF4460401AB7. K.F., M.R. and A.U. acknowledge support by the German Research Foundation (grant Nos. UN 341/3-1 and Inst 275/391-1). J.B. acknowledges the projects CellFreeImplant and LaserImplant. These two projects have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No. 800832 (CellFreeImplant) and No. 951730 (LaserImplant).Peer reviewe

    Tax authorities’ interaction with taxpayers: A conception of compliance by power and trust.

    Get PDF
    AbstractTax compliance represents a social dilemma in which the short-term self-interest to minimize tax payments is at odds with the collective long-term interest to provide sufficient tax funds for public goods. According to the Slippery Slope Framework, the social dilemma can be solved and tax compliance can be guaranteed by power of tax authorities and trust in tax authorities. The framework, however, remains silent on the dynamics between power and trust. The aim of the present theoretical paper is to conceptualize the dynamics between power and trust by differentiating coercive and legitimate power and reason-based and implicit trust. Insights into this dynamic are derived from an integration of a wide range of literature such as on organizational behavior and social influence. Conclusions on the effect of the dynamics between power and trust on the interaction climate between authorities and individuals and subsequent individual motivation of cooperation in social dilemmas such as tax contributions are drawn. Practically, the assumptions on the dynamics can be utilized by authorities to increase cooperation and to change the interaction climate from an antagonistic climate to a service and confidence climate

    Peculiarities in XPS spectra of Sn/SiO2 layers as an effect of surface charge

    No full text
    X-ray photoelectron spectroscopy based on synchrotron radiation was used to investigate the composition of the observed SnO2-x/Sn:SiO2-x thin layer grown by organometallic chemical vapour deposition on single-crystalline silicon wafer with additional argon ions etching treatment. Due to the formation of a thermodynamic anomaly during in situ layer growth, an efficient oxygen exchange between silicon and tin oxide phases occurs. The present study addresses the effect of localized surface charging and its influence on the obtained XPS core level spectra. We found that due to the high electrical conductivity of metallic tin and the direct coupling of tin particles to the silicon wafer, the XPS Sn 3d5/2 core level spectrum is not affected by the surface charge compared to the highly charged dielectric silicon oxide matrix, as observed for the XPS O 1 s and Si 2p core level spectra. Our results show that the core level spectra of Si 2p and O 1 s are shifted up to 3 eV due to the presence of uncompensated positive charge on the surface of the silica matrix. These results provide insight into the influence of surface charge effects on the analysis of conductor/insulator composite materials and contribute to the application of Sn-based materials in various application concepts related to energy and surface functionalization

    Formation of Nanoscale Al<sub>2</sub>O<sub>3</sub> Protective Layer by Preheating Treatment for Improving Corrosion Resistance of Dilute Fe-Al Alloys

    Get PDF
    In this work, an attempt was made to improve the corrosion resistance of dilute Fe-Al alloys (1.0 mass% Al) by preheating treatment at 1073 K in H2 atmosphere. In comparison with pure Fe and unpreheated Fe-Al alloys, the resistance to oxidation at 673 K in pure O2 and to electrochemical corrosion in 5 wt.% NaCl solution is significantly improved for preheated Fe-Al alloys. This improvement is attributed to the formation of a 20 nm thin, but dense Al2O3 protective layer on the surface of preheated Fe-Al alloys

    Modelling of the Solidifying Microstructure of Inconel 718: Quasi-Binary Approximation

    No full text
    The prediction of the equilibrium and metastable morphologies during the solidification of Ni-based superalloys on the mesoscopic scale can be performed using phase-field modeling. In the present paper, we apply the phase-field model to simulate the evolution of solidification microstructures depending on undercooling in a quasi-binary approximation. The results of modeling are compared with experimental data obtained on samples of the alloy Inconel 718 (IN718) processed using the electromagnetic leviatation (EML) technique. The final microstructure, concentration profiles of niobium, and the interface-velocity–undercooling relationship predicted by the phase field modeling are in good agreement with the experimental findings. The simulated microstructures and concentration fields can be used as inputs for the simulation of the precipitation of secondary phases

    Single Femtosecond Laser-Pulse-Induced Superficial Amorphization and Re-Crystallization of Silicon

    No full text
    Superficial amorphization and re-crystallization of silicon in &lt;111&gt; and &lt;100&gt; orientation after irradiation by femtosecond laser pulses (790 nm, 30 fs) are studied using optical imaging and transmission electron microscopy. Spectroscopic imaging ellipsometry (SIE) allows fast data acquisition at multiple wavelengths and provides experimental data for calculating nanometric amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. For a radially Gaussian laser beam and at moderate peak fluences above the melting and below the ablation thresholds, laterally parabolic amorphous layer profiles with maximum thicknesses of several tens of nanometers were quantitatively attained. The accuracy of the calculations is verified experimentally by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). Along with topographic information obtained by atomic force microscopy (AFM), a comprehensive picture of the superficial re-solidification of silicon after local melting by femtosecond laser pulses is drawn

    Diabetes management in Wolcott-Rallison syndrome: analysis from the German/Austrian DPV database

    No full text
    Background Wolcott-Rallison syndrome (WRS) is characterized by permanent early-onset diabetes, skeletal dysplasia and several additional features, e.g. recurrent liver failure. This is the first multicentre approach that focuses on diabetes management in WRS. We searched the German/Austrian Diabetes-Patienten-Verlaufsdokumentation (DPV) registry and studied anthropometric characteristics, diabetes treatment, glycaemic control and occurrence of severe hypoglycaemia (SH) and diabetic ketoacidosis (DKA) in 11 patients with WRS. Furthermore, all local treatment centres were personally contacted to retrieve additional information on genetic characteristics, migration background and rate of consanguinity. Results Data were analysed at diabetes onset and after a median follow-up period of 3 (1.5-9.0) years (time from diagnosis to latest follow-up). Median age at diabetes onset was 0.2 (0.1-0.3) years, while onset was delayed in one patient (aged 16 months). Seventy percent of patients manifested with DKA. At follow-up, 90% of patients were on insulin pump therapy requiring 0.7 [0.5-1.0] IU of insulin/kg/d. More than two third of patients had HbA1c level >= 8%, 40% experienced at least one episode of SH in the course of the disease. Three patients died at 0.6, 5 and 9 years of age, respectively. To the best of our knowledge three patients carried novel mutations in EIF2AK3. Conclusion Insulin requirements of individuals with WRS registered in DPV appear to be comparable to those of preschool children with well-controlled type 1 diabetes, while glycaemic control tends to be worse and episodes of SH tend to be more common. The majority of individuals with WRS in the DPV registry does not reach glycaemic target for HbA1c as defined for preschool children (< 7.5%). International multicentre studies are required to further improve our knowledge on the care of children with WRS
    corecore