1,737 research outputs found

    Involvement of carbon dioxide in the aerobic biodegradation of ethylene oxide, ethene, and vinyl chloride

    Get PDF
    The involvement of a carboxylase in metabolism of C-2 alkenes by Ochrobactrum sp. strain TD and Pseudomonas putida strain AJ was examined. With resting cells of strain TD grown on vinyl chloride, ethene, and ethylene oxide, the maximum specific rate of ethylene oxide consumption decreased significantly in the absence of external CO2 in comparison to cells provided with room air or added CO2. The amount of 14CO2 incorporated into biomass by resting cells of strain TD grown on ethylene oxide increased more than 13-fold when the assay substrate was ethylene oxide versus acetate. These results indicate that strain TD uses a carboxylase. Similar experiments were performed with strain AJ with the results suggesting that a carboxylase is not involved. In this regard, strain AJ is more similar to various Mycobacterium isolates that also do not appear to use a carboxylase during metabolism of vinyl chloride and ethene.Department of Biomedical and Biomolecular Sciences, Sheffield Hallam University

    Sum rules and three point functions

    Full text link
    Sum rules constraining the R-current spectral densities are derived holographically for the case of D3-branes, M2-branes and M5-branes all at finite chemical potentials. In each of the cases the sum rule relates a certain integral of the spectral density over the frequency to terms which depend both on long distance physics, hydrodynamics and short distance physics of the theory. The terms which which depend on the short distance physics result from the presence of certain chiral primaries in the OPE of two R-currents which are turned on at finite chemical potential. Since these sum rules contain information of the OPE they provide an alternate method to obtain the structure constants of the two R-currents and the chiral primary. As a consistency check we show that the 3 point function derived from the sum rule precisely matches with that obtained using Witten diagrams.Comment: 41 page

    Digital detection of exosomes by interferometric imaging

    Get PDF
    Exosomes, which are membranous nanovesicles, are actively released by cells and have been attributed to roles in cell-cell communication, cancer metastasis, and early disease diagnostics. The small size (30–100 nm) along with low refractive index contrast of exosomes makes direct characterization and phenotypical classification very difficult. In this work we present a method based on Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows multiplexed phenotyping and digital counting of various populations of individual exosomes (>50 nm) captured on a microarray-based solid phase chip. We demonstrate these characterization concepts using purified exosomes from a HEK 293 cell culture. As a demonstration of clinical utility, we characterize exosomes directly from human cerebrospinal fluid (hCSF). Our interferometric imaging method could capture, from a very small hCSF volume (20 uL), nanoparticles that have a size compatible with exosomes, using antibodies directed against tetraspanins. With this unprecedented capability, we foresee revolutionary implications in the clinical field with improvements in diagnosis and stratification of patients affected by different disorders.This work was supported by Regione Lombardia and Fondazione Cariplo through POR-FESR, project MINER (ID 46875467); Italian Ministry of Health, Ricerca Corrente. This work was partially supported by The Scientific and Technological Research Council of Turkey (grant #113E643). (Regione Lombardia; 46875467 - Fondazione Cariplo through POR-FESR, project MINER; Italian Ministry of Health, Ricerca Corrente; 113E643 - Scientific and Technological Research Council of Turkey)Published versio

    Implications in Using Monte Carlo Simulation in Predicting Cardiovascular Risk Factors among Overweight Children and Adolescents

    Get PDF
    The prevalence of overweight and obesity among children and adolescents has increased considerably over the last few decades. As a result, increasing numbers of American children are developing multiple risk factors for cardiovascular disease, type II diabetes, hyperinsulinemia, hypertension, dyslipidemia and hepatic steatosis. This thesis examines the use of Monte Carlo computer simulation for understanding risk factors associated with childhood overweight. A computer model is presented for predicting cardiovascular risk factors among overweight children and adolescents based on BMI levels. The computer model utilizes probabilities from the 1999 Bogalusa Heart Study authored by David S. Freedman, William H. Dietz, Sathanur R. Srinivasan and Gerald S. Berenson. The thesis examines strengths, weaknesses and opportunities associated with the developed model. Utilizing this approach, organizations can insert their own probabilities and customized algorithms for predicting future events

    A Spectroscopic Binary at the M/L Transition

    Full text link
    We report the discovery of a single-lined spectroscopic binary with an Ultra Cool Dwarf (UCD) primary with a spectral type between M8 and L0.5. This system was discovered during the course of an ongoing survey to monitor L dwarfs for radial velocity variations and is the first known small separation (a<1 AU) spectroscopic binary among dwarfs at the M/L transition. Based on radial-velocity measurements with a typical precision of 300 m/s we estimate the orbital parameters of this system to be P=246.73+/-0.49 d, a1 sin(i)=0.159+/-0.003 AU, M2 sin(i)=0.2062 (M1+M2)^(2/3)+/-0.0034 M_{\sun}. Assuming a primary mass of M1=0.08M_{\sun} (based on spectral type), we estimate the secondary minimum mass to be M2 sin(i)=0.054 M_{\sun}. With future photometric, spectroscopic, and interferometric observations it may be possible to determine the dynamical masses of both components directly, making this system one of the best characterized UCD binaries known.Comment: 11 pages, 2 figures. Accepted for publication in ApJ Letter

    Atmospheric circulation of hot Jupiters: Coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b

    Get PDF
    We present global, three-dimensional numerical simulations of HD 189733b and HD 209458b that couple the atmospheric dynamics to a realistic representation of non-gray cloud-free radiative transfer. The model, which we call the Substellar and Planetary Atmospheric Radiation and Circulation (SPARC) model, adopts the MITgcm for the dynamics and uses the radiative model of McKay, Marley, Fortney, and collaborators for the radiation. Like earlier work with simplified forcing, our simulations develop a broad eastward equatorial jet, mean westward flow at higher latitudes, and substantial flow over the poles at low pressure. For HD 189733b, our simulations without TiO and VO opacity can explain the broad features of the observed 8 and 24-micron light curves, including the modest day-night flux variation and the fact that the planet/star flux ratio peaks before the secondary eclipse. Our simulations also provide reasonable matches to the Spitzer secondary-eclipse depths at 4.5, 5.8, 8, 16, and 24 microns and the groundbased upper limit at 2.2 microns. However, we substantially underpredict the 3.6-micron secondary-eclipse depth, suggesting that our simulations are too cold in the 0.1-1 bar region. Predicted temporal variability in secondary-eclipse depths is ~1% at Spitzer bandpasses, consistent with recent observational upper limits at 8 microns. We also show that nonsynchronous rotation can significantly alter the jet structure. For HD 209458b, we include TiO and VO opacity; these simulations develop a hot (>2000 K) dayside stratosphere. Despite this stratosphere, we do not reproduce current Spitzer photometry of this planet. Light curves in Spitzer bandpasses show modest phase variation and satisfy the observational upper limit on day-night phase variation at 8 microns. (abridged)Comment: 20 pages (emulate-apj format), 21 figures, final version now published in ApJ. Includes expanded discussion of radiative-transfer methods and two new figure

    Finite precision measurement nullifies the Kochen-Specker theorem

    Get PDF
    Only finite precision measurements are experimentally reasonable, and they cannot distinguish a dense subset from its closure. We show that the rational vectors, which are dense in S^2, can be colored so that the contradiction with hidden variable theories provided by Kochen-Specker constructions does not obtain. Thus, in contrast to violation of the Bell inequalities, no quantum-over-classical advantage for information processing can be derived from the Kochen-Specker theorem alone.Comment: 7 pages, plain TeX; minor corrections, interpretation clarified, references update

    Wilson Loops and Minimal Surfaces

    Get PDF
    The AdS/CFT correspondence suggests that the Wilson loop of the large N gauge theory with N=4 supersymmetry in 4 dimensions is described by a minimal surface in AdS_5 x S^5. We examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which we call BPS loops, whose expectation values are free from ultra-violet divergence. We formulate the loop equation for such loops. To the extent that we have checked, the minimal surface in AdS_5 x S^5 gives a solution of the equation. We also discuss the zig-zag symmetry of the loop operator. In the N=4 gauge theory, we expect the zig-zag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. We will show how this is realized for the minimal surface.Comment: 51 pages, 7 figure

    Kaluza-Klein supergravity on AdS_3 x S^3

    Full text link
    We construct a Chern-Simons type gauged N=8 supergravity in three spacetime dimensions with gauge group SO(4) x T_\infty over the infinite dimensional coset space SO(8,\infty)/(SO(8) x SO(\infty)), where T_\infty is an infinite dimensional translation subgroup of SO(8,\infty). This theory describes the effective interactions of the (infinitely many) supermultiplets contained in the two spin-1 Kaluza-Klein towers arising in the compactification of N=(2,0) supergravity in six dimensions on AdS_3 x S^3 with the massless supergravity multiplet. After the elimination of the gauge fields associated with T_\infty, one is left with a Yang Mills type gauged supergravity with gauge group SO(4), and in the vacuum the symmetry is broken to the (super-)isometry group of AdS_3 x S^3, with infinitely many fields acquiring masses by a variant of the Brout-Englert-Higgs effect.Comment: LaTeX2e, 24 pages; v2: references update
    • …
    corecore