145 research outputs found

    Probing the superconducting gap symmetry of PrRu4_{4}Sb12_{12}: A comparison with PrOs4_{4}Sb12_{12}

    Full text link
    We report measurements of the magnetic penetration depth λ\lambda in single crystals of PrRu4_{4}Sb12_{12} down to 0.1 K. Both λ\lambda and superfluid density ρs\rho_{s} exhibit an exponential behavior for TT << 0.5TcT_{c}, with parameters Δ\Delta(0)/\textit{k}B_{B}\textit{T}c_{c} = 1.9 and λ(0)\lambda(0) = 2900 \AA. The value of Δ\Delta(0) is consistent with the specific-heat jump value of ΔC/γTc\Delta C/\gamma T_{c} = 1.87 measured elsewhere, while the value of λ(0)\lambda(0) is consistent with the measured value of the electronic heat-capacity coefficient γ\gamma. Our data are consistent with PrRu4_{4}Sb12_{12} being a moderate-coupling, fully-gapped superconductor. We suggest experiments to study how the nature of the superconducting state evolves with increasing Ru substitution for Os

    The Simons Observatory: A fully remote controlled calibration system with a sparse wire grid for cosmic microwave background telescopes

    Full text link
    For cosmic microwave background (CMB) polarization observations, calibration of detector polarization angles is essential. We have developed a fully remote controlled calibration system with a sparse wire grid that reflects linearly polarized light along the wire direction. The new feature is a remote-controlled system for regular calibration, which has not been possible in sparse wire grid calibrators in past experiments. The remote control can be achieved by two electric linear actuators that load or unload the sparse wire grid into a position centered on the optical axis of a telescope between the calibration time and CMB observation. Furthermore, the sparse wire grid can be rotated by a motor. A rotary encoder and a gravity sensor are installed on the sparse wire grid to monitor the wire direction. They allow us to achieve detector angle calibration with expected systematic error of 0.080.08^{\circ}. The calibration system will be installed in small-aperture telescopes at Simons Observatory

    The optical design of the six-meter CCAT-prime and Simons Observatory telescopes

    Full text link
    A common optical design for a coma-corrected, 6-meter aperture, crossed-Dragone telescope has been adopted for the CCAT-prime telescope of CCAT Observatory, Inc., and for the Large Aperture Telescope of the Simons Observatory. Both are to be built in the high altitude Atacama Desert in Chile for submillimeter and millimeter wavelength observations, respectively. The design delivers a high throughput, relatively flat focal plane, with a field of view 7.8 degrees in diameter for 3 mm wavelengths, and the ability to illuminate >100k diffraction-limited beams for < 1 mm wavelengths. The optics consist of offset reflecting primary and secondary surfaces arranged in such a way as to satisfy the Mizuguchi-Dragone criterion, suppressing first-order astigmatism and maintaining high polarization purity. The surface shapes are perturbed from their standard conic forms in order to correct coma aberrations. We discuss the optical design, performance, and tolerancing sensitivity. More information about CCAT-prime can be found at ccatobservatory.org and about Simons Observatory at simonsobservatory.org.Comment: Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas, USA; Proceedings Volume 10700, Ground-based and Airborne Telescopes VII; 1070041 (2018

    The fungal alkaloid Okaramine-B activates an L-glutamate-gated chloride channel from Ixodes scapularis, a tick vector of Lyme disease

    Get PDF
    This work was supported by Merial Ltd., The Japan Society for the Promotion of Sciences (KAKENHI, Grant number: 17H01472) and The UK Medical Research Council.A novel L-glutamate-gated anion channel (IscaGluCl1) has been cloned from the black-legged tick, Ixodes scapularis, which transmits multiple pathogens including the agents of Lyme disease and human granulocytic anaplasmosis. When mRNA encoding IscaGluCl1 was expressed in Xenopus laevis oocytes, we detected robust 50–400 nA currents in response to 100 μM L-glutamate. Responses to L-glutamate were concentration-dependent (pEC50 3.64 ± 0.11). Ibotenate was a partial agonist on IscaGluCl1. We detected no response to 100 μM aspartate, quisqualate, kainate, AMPA or NMDA. Ivermectin at 1 μM activated IscaGluCl1, whereas picrotoxinin (pIC50 6.20 ± 0.04) and the phenylpyrazole fipronil (pIC50 6.90 ± 0.04) showed concentration-dependent block of the L-glutamate response. The indole alkaloid okaramine B, isolated from fermentation products of Penicillium simplicissimum (strain AK40) grown on okara pulp, activated IscaGluCl1 in a concentration-dependent manner (pEC50 5.43 ± 0.43) and may serve as a candidate lead compound for the development of new acaricides.Publisher PDFPeer reviewe

    The Simons Observatory: Beam characterization for the Small Aperture Telescopes

    Full text link
    We use time-domain simulations of Jupiter observations to test and develop a beam reconstruction pipeline for the Simons Observatory Small Aperture Telescopes. The method relies on a map maker that estimates and subtracts correlated atmospheric noise and a beam fitting code designed to compensate for the bias caused by the map maker. We test our reconstruction performance for four different frequency bands against various algorithmic parameters, atmospheric conditions and input beams. We additionally show the reconstruction quality as function of the number of available observations and investigate how different calibration strategies affect the beam uncertainty. For all of the cases considered, we find good agreement between the fitted results and the input beam model within a ~1.5% error for a multipole range l = 30 - 700.Comment: 22 pages, 21 figures, to be submitted to Ap

    Independent and Opposing Roles For Btk and Lyn in B and Myeloid Signaling Pathways

    Get PDF
    Transphosphorylation by Src family kinases is required for the activation of Bruton's tyrosine kinase (Btk). Differences in the phenotypes of Btk−/− and lyn−/− mice suggest that these kinases may also have independent or opposing functions. B cell development and function were examined in Btk−/−lyn−/− mice to better understand the functional interaction of Btk and Lyn in vivo. The antigen-independent phase of B lymphopoiesis was normal in Btk−/−lyn−/− mice. However, Btk−/−lyn−/− animals had a more severe immunodeficiency than Btk−/− mice. B cell numbers and response to T cell–dependent antigens were reduced. Btk and Lyn therefore play independent or partially redundant roles in the maintenance and function of peripheral B cells. Autoimmunity, hypersensitivity to B cell receptor (BCR) cross-linking, and splenomegaly caused by myeloerythroid hyperplasia were alleviated by Btk deficiency in lyn−/− mice. A transgene expressing Btk at ∼25% of endogenous levels (Btklo) was crossed onto Btk−/− and Btk−/−lyn−/− backgrounds to demonstrate that Btk is limiting for BCR signaling in the presence but not in the absence of Lyn. These observations indicate that the net outcome of Lyn function in vivo is to inhibit Btk-dependent pathways in B and myeloid cells, and that Btklo mice are a useful sensitized system to identify regulatory components of Btk signaling pathways

    Making maps of cosmic microwave background polarization for B-mode studies: The POLARBEAR example

    Get PDF
    Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. For instance, in the context of ground-based observations, filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signals on the resulting maps. In this work we have explicitly constructed a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigated the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then discuss the potential implications of these observations on the choice of map-making and power spectrum estimation approaches in the context of B-mode polarization studies. Specifically, we have studied the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may haveon the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focused on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR. Our analysis and conclusions are however more generally applicable. \ua9 ESO, 2017
    corecore