1,328 research outputs found
Open and remotely accessible Neuroplatform for research in wetware computing
Wetware computing and organoid intelligence is an emerging research field at the intersection of electrophysiology and artificial intelligence. The core concept involves using living neurons to perform computations, similar to how Artificial Neural Networks (ANNs) are used today. However, unlike ANNs, where updating digital tensors (weights) can instantly modify network responses, entirely new methods must be developed for neural networks using biological neurons. Discovering these methods is challenging and requires a system capable of conducting numerous experiments, ideally accessible to researchers worldwide. For this reason, we developed a hardware and software system that allows for electrophysiological experiments on an unmatched scale. The Neuroplatform enables researchers to run experiments on neural organoids with a lifetime of even more than 100 days. To do so, we streamlined the experimental process to quickly produce new organoids, monitor action potentials 24/7, and provide electrical stimulations. We also designed a microfluidic system that allows for fully automated medium flow and change, thus reducing the disruptions by physical interventions in the incubator and ensuring stable environmental conditions. Over the past three years, the Neuroplatform was utilized with over 1,000 brain organoids, enabling the collection of more than 18 terabytes of data. A dedicated Application Programming Interface (API) has been developed to conduct remote research directly via our Python library or using interactive compute such as Jupyter Notebooks. In addition to electrophysiological operations, our API also controls pumps, digital cameras and UV lights for molecule uncaging. This allows for the execution of complex 24/7 experiments, including closed-loop strategies and processing using the latest deep learning or reinforcement learning libraries. Furthermore, the infrastructure supports entirely remote use. Currently in 2024, the system is freely available for research purposes, and numerous research groups have begun using it for their experiments. This article outlines the system’s architecture and provides specific examples of experiments and results
High-Resolution Genome-Wide Analysis of Irradiated (UV and γ-Rays) Diploid Yeast Cells Reveals a High Frequency of Genomic Loss of Heterozygosity (LOH) Events
In diploid eukaryotes, repair of double-stranded DNA breaks by homologous recombination often leads to loss of heterozygosity (LOH). Most previous studies of mitotic recombination in Saccharomyces cerevisiae have focused on a single chromosome or a single region of one chromosome at which LOH events can be selected. In this study, we used two techniques (single-nucleotide polymorphism microarrays and high-throughput DNA sequencing) to examine genome-wide LOH in a diploid yeast strain at a resolution averaging 1 kb. We examined both selected LOH events on chromosome V and unselected events throughout the genome in untreated cells and in cells treated with either γ-radiation or ultraviolet (UV) radiation. Our analysis shows the following: (1) spontaneous and damage-induced mitotic gene conversion tracts are more than three times larger than meiotic conversion tracts, and conversion tracts associated with crossovers are usually longer and more complex than those unassociated with crossovers; (2) most of the crossovers and conversions reflect the repair of two sister chromatids broken at the same position; and (3) both UV and γ-radiation efficiently induce LOH at doses of radiation that cause no significant loss of viability. Using high-throughput DNA sequencing, we also detected new mutations induced by γ-rays and UV. To our knowledge, our study represents the first high-resolution genome-wide analysis of DNA damage-induced LOH events performed in any eukaryote
Reliability of stored river water as an alternative for consumption in Ekpoma, Nigeria: a human health risk assessment
With looming global water-related issues, the monitoring of water quality for household and industrial consumption has become more pertinent. Rivers in nearby towns serve as primary water sources for Ekpoma town. 123 samples of stored river water were collected from 41 sampling locations and physical properties - pH, electrical conductivity (EC), salinity, temperature, and total dissolved solids (TDS) - were measured in situ using the Hanna edge® Multiparameter EC/TDS/Salinity Meter-HI2030. Atomic absorption spectrophotometry (AAS) was used to detect and measure the concentration of potentially toxic metals (PTMs): Al, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. The measured concentrations were compared to the WHO, US EPA, and NSDWQ regulatory standards, and a spatiotemporal health risk analysis was performed using HERisk software. Twenty-five percent of the tested samples contained PTM concentrations within the allowable regulatory limits. Spatiotemporal health risk analysis showed that 98.8% of the cumulative carcinogenic risks (CRcum) were entirely from Pb contamination via oral ingestion. PTM concentrations in the samples suggest the degradation of river water quality due to agricultural activities, crude oil exploration activities, and soil composition in the region. Best management practices (BMPs) and treatment processes for the removal of detected contaminants are recommended to improve water quality
Challenges and opportunities for implementing integrated mental health care: a district level situation analysis from five low- and middle-income countries.
BACKGROUND: Little is known about how to tailor implementation of mental health services in low- and middle-income countries (LMICs) to the diverse settings encountered within and between countries. In this paper we compare the baseline context, challenges and opportunities in districts in five LMICs (Ethiopia, India, Nepal, South Africa and Uganda) participating in the PRogramme for Improving Mental health carE (PRIME). The purpose was to inform development and implementation of a comprehensive district plan to integrate mental health into primary care. METHODS: A situation analysis tool was developed for the study, drawing on existing tools and expert consensus. Cross-sectional information obtained was largely in the public domain in all five districts. RESULTS: The PRIME study districts face substantial contextual and health system challenges many of which are common across sites. Reliable information on existing treatment coverage for mental disorders was unavailable. Particularly in the low-income countries, many health service organisational requirements for mental health care were absent, including specialist mental health professionals to support the service and reliable supplies of medication. Across all sites, community mental health literacy was low and there were no models of multi-sectoral working or collaborations with traditional or religious healers. Nonetheless health system opportunities were apparent. In each district there was potential to apply existing models of care for tuberculosis and HIV or non-communicable disorders, which have established mechanisms for detection of drop-out from care, outreach and adherence support. The extensive networks of community-based health workers and volunteers in most districts provide further opportunities to expand mental health care. CONCLUSIONS: The low level of baseline health system preparedness across sites underlines that interventions at the levels of health care organisation, health facility and community will all be essential for sustainable delivery of quality mental health care integrated into primary care
Το λογισμικό SpatialAnalyzer & εφαρμογές του σε προβλήματα βιομηχανικής γεωδαισίας
This paper reports a first study exploring genomic prediction for adaptation of sorghum [Sorghum bicolor (L.) Moench] to drought-stress (D-ET) and nonstress (W-ET) environment types. The objective was to evaluate the impact of both modeling genotype × environment interaction (G×E) and accounting for heterogeneous variances of marker effects on genomic prediction of parental breeding values for grain yield within and across environment types (ETs). For this aim, different genetic covariance structures and different weights for individual markers were investigated in best linear unbiased prediction (BLUP)-based prediction models. The BLUP models used a kinship matrix combining pedigree and genomic information, termed K-BLUP. The dataset comprised testcross yield performances under D-ET and W-ET as well as pedigree and genomic data. In general, modeling G×E increased predictive ability and reduced empirical bias of genomic predictions for broad adaptation across both ETs vs. models that ignored G×E by fitting a main genetic effect only. Genomic predictions for specific adaptation to D-ET or W-ET were also improved by K-BLUP models that explicitly accommodated G×E and used data from both ETs relative to prediction models that used data from the targeted ET exclusively or models that used all the data but assumed no G×E. Allowing for heterogeneous marker variances through weighted K-BLUP produced clear increments (43–72%) in predictive ability of genomic prediction for grain yield in all adaptation scenarios. We conclude that G×E as well as locus-specific genetic variances should be accommodated in genomic prediction models to improve adaptability of sorghum to variable environmental conditions
UAS Chromatograph for Atmospheric Trace Species (UCATS) – a versatile instrument for trace gas measurements on airborne platforms
UCATS (the UAS Chromatograph for Atmospheric Trace Species) was designed and built for observations of important atmospheric trace gases from unmanned aircraft systems (UAS) in the upper troposphere and lower stratosphere (UTLS). Initially it measured major chlorofluorocarbons (CFCs) and the stratospheric transport tracers nitrous oxide (N2O) and sulfur hexafluoride (SF6), using gas chromatography with electron capture detection. Compact commercial absorption spectrometers for ozone (O3) and water vapor (H2O) were added to enhance its capabilities on platforms with relatively small payloads. UCATS has since been reconfigured to measure methane (CH4), carbon monoxide (CO), and molecular hydrogen (H2) instead of CFCs and has undergone numerous upgrades to its subsystems. It has served as part of large payloads on stratospheric UAS missions to probe the tropical tropopause region and transport of air into the stratosphere; in piloted aircraft studies of greenhouse gases, transport, and chemistry in the troposphere; and in 2021 is scheduled to return to the study of stratospheric ozone and halogen compounds, one of its original goals. Each deployment brought different challenges, which were largely met or resolved. The design, capabilities, modifications, and some results from UCATS are shown and described here, including changes for future missions.Support was provided for HIPPO by NSF award no. AGS-0628452, for ATTREX by NASA Earth Venture program award no. NNA11AA55I, and for ATom by NASA award no. NNH17AE26I; additional support was provided by NASA Upper Atmosphere Research Program award no. NNH13AV69I. This work was also supported in part by the NOAA Cooperative Agreement with CIRES, NA17OAR4320101
Integrated Carbon Budget Models for the Everglades Terrestrial-Coastal-Oceanic Gradient: Current Status and Needs for Inter-Site Comparisons
Recent studies suggest that coastal ecosystems can bury significantly more C than tropical forests, indicating that continued coastal development and exposure to sea level rise and storms will have global biogeochemical consequences. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site provides an excellent subtropical system for examining carbon (C) balance because of its exposure to historical changes in freshwater distribution and sea level rise and its history of significant long-term carbon-cycling studies. FCE LTER scientists used net ecosystem C balance and net ecosystem exchange data to estimate C budgets for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights into the magnitude of C accumulation and lateral aquatic C transport. Rates of net C production in the riverine mangrove forest exceeded those reported for many tropical systems, including terrestrial forests, but there are considerable uncertainties around those estimates due to the high potential for gain and loss of C through aquatic fluxes. C production was approximately balanced between gain and loss in Everglades marshes; however, the contribution of periphyton increases uncertainty in these estimates. Moreover, while the approaches used for these initial estimates were informative, a resolved approach for addressing areas of uncertainty is critically needed for coastal wetland ecosystems. Once resolved, these C balance estimates, in conjunction with an understanding of drivers and key ecosystem feedbacks, can inform cross-system studies of ecosystem response to long-term changes in climate, hydrologic management, and other land use along coastlines
Rapid Regulatory T-Cell Response Prevents Cytokine Storm in CD28 Superagonist Treated Mice
Superagonistic CD28-specific monoclonal antibodies (CD28SA) are highly effective activators of regulatory T-cells (Treg cells) in rats, but a first-in-man trial of the human CD28SA TGN1412 resulted in an unexpected cytokine release syndrome. Using a novel mouse anti-mouse CD28SA, we re-investigate the relationship between Treg activation and systemic cytokine release. Treg activation by CD28SA was highly efficient but depended on paracrine IL-2 from CD28SA-stimulated conventional T-cells. Systemic cytokine levels were innocuous, but depletion of Treg cells prior to CD28SA stimulation led to systemic release of proinflammatory cytokines, indicating that in rodents, Treg cells effectively suppress the inflammatory response. Since the human volunteers of the TGN1412 study were not protected by this mechanism, we also tested whether corticosteroid prophylaxis would be compatible with CD28SA induced Treg activation. We show that neither the expansion nor the functional activation of Treg cells is affected by high-dose dexamethasone sufficient to control systemic cytokine release. Our findings warn that preclinical testing of activating biologicals in rodents may miss cytokine release syndromes due to the rapid and efficacious response of the rodent Treg compartment, and suggest that polyclonal Treg activation is feasible in the presence of antiphlogistic corticosteroid prophylaxis
MHC class I–specific antibody binding to nonhematopoietic cells drives complement activation to induce transfusion-related acute lung injury in mice
In a manner partially independent of activating Fcγ receptors, antibody-mediated production of complement component C5a and recruitment of macrophages elicit transfusion-related acute lung injury in mice
- …