1,563 research outputs found

    Increased matrix synthesis following adenoviral transfer of a transforming growth factor beta1 gene into articular chondrocytes

    Get PDF
    Monolayer cultures of lapine articular chondrocytes were transduced with first-generation adenoviral vectors carrying lacZ or transforming growth factor β1 genes under the transcriptional control of the human cytomegalovirus early promoter. High concentrations of transforming growth factor β1 were produced by chondrocytes following transfer of the transforming growth factor β1 gene but not the lacZ gene. Transduced chondrocytes responded to the elevated endogenous production of transforming growth factor β1 by increasing their synthesis of proteoglycan, collagen, and noncollagenous proteins in a dose-dependent fashion. The increases in collagen synthesis were not accompanied by alterations in the collagen phenotype; type-II collagen remained the predominant collagen. Transforming growth factor β1 could not, however, rescue the collagen phenotype of cells that had undergone phenotypic modulation as a result of serial passaging. These data demonstrate that chondrocytes can be genetically manipulated to produce and respond to the potentially therapeutic cytokine transforming growth factor β1. This technology has a number of experimental and therapeutic applications, including those related to the study and treatment of arthritis and cartilage repair

    The many positive impacts of participating in outreach activities on postgraduate students

    Get PDF
    Postgraduate students are excellent role models for school students, where their passion and energy play a vital role in engaging younger students and spreading enthusiasm and excitement about science. However, participating in outreach is not a one way activity for these postgraduate students. Through focus groups we show that the postgraduate students perceive that there are many benefits for themselves. These benefits are identified and discussed. This paper also contrasts the postgraduate with their undergraduate counterpart in terms of their contributions to engagement activities

    Tapping into the glial reservoir: cells committed to remaining uncommitted

    Get PDF
    The development and maturation of the oligodendrocyte requires a series of highly orchestrated events that coordinate the proliferation and differentiation of the oligodendrocyte precursor cell (OPC) as well as the spatiotemporal regulation of myelination. In recent years, widespread interest has been devoted to the therapeutic potential of adult OPCs scattered throughout the central nervous system (CNS). In this review, we highlight molecular mechanisms controlling OPC differentiation during development and the implication of these mechanisms on adult OPCs for remyelination. Cell-autonomous regulators of differentiation and the heterogeneous microenvironment of the developing and the adult CNS may provide coordinated inhibitory cues that ultimately maintain a reservoir of uncommitted glia

    Surface electrons at plasma walls

    Full text link
    In this chapter we introduce a microscopic modelling of the surplus electrons on the plasma wall which complements the classical description of the plasma sheath. First we introduce a model for the electron surface layer to study the quasistationary electron distribution and the potential at an unbiased plasma wall. Then we calculate sticking coefficients and desorption times for electron trapping in the image states. Finally we study how surplus electrons affect light scattering and how charge signatures offer the possibility of a novel charge measurement for dust grains.Comment: To appear in Complex Plasmas: Scientific Challenges and Technological Opportunities, Editors: M. Bonitz, K. Becker, J. Lopez and H. Thomse

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    Properties of Light Flavour Baryons in Hypercentral quark model

    Full text link
    The light flavour baryons are studied within the quark model using the hyper central description of the three-body system. The confinement potential is assumed as hypercentral coulomb plus power potential (hCPPνhCPP_\nu) with power index ν\nu. The masses and magnetic moments of light flavour baryons are computed for different power index, ν\nu starting from 0.5 to 1.5. The predicted masses and magnetic moments are found to attain a saturated value with respect to variation in ν\nu beyond the power index ν>\nu> 1.0. Further we computed transition magnetic moments and radiative decay width of light flavour baryons. The results are in good agreement with known experimental as well as other theoretical models.Comment: Accepted in Pramana J. of Physic

    Microarray Screening for Genes Involved in Oligodendrocyte Differentiation in the Zebrafish CNS

    Get PDF
    Within the vertebrate nervous system, myelination is required for the normal function of neurons by facilitating the rapid conduction of action potentials along axons. Oligodendrocytes are glial cells which myelinate axons in the central nervous system. Disruption of myelination and remyelination failure can cause human diseases such as multiple sclerosis. Despite the importance of myelination, the molecular basis of oligodendrocyte differentiation and myelination are still poorly understood. To understand the molecular mechanisms which regulate oligodendrocyte differentiation and myelination, novel genes were identified using a microarray analysis. The analysis used oligodendrocyte lineage cells isolated from transgenic zebrafish expressing fluorescent proteins in the oligodendrocyte lineage cells. Seven genes not previously known to be involved in oligodendrocyte differentiation were identified, and their expression during oligodendrocyte development was validated

    Neural Stem Cells Engineered to Express Three Therapeutic Factors Mediate Recovery from Chronic Stage CNS Autoimmunity

    Get PDF
    © The American Society of Gene and Cell Therapy. Treatment of chronic neurodegenerative diseases such as multiple sclerosis (MS) remains a major challenge. Here we genetically engineer neural stem cells (NSCs) to produce a triply therapeutic cocktail comprising IL-10, NT-3, and LINGO-1-Fc, thus simultaneously targeting all mechanisms underlie chronicity of MS in the central nervous system (CNS): persistent inflammation, loss of trophic support for oligodendrocytes and neurons, and accumulation of neuroregeneration inhibitors. After transplantation, NSCs migrated into the CNS inflamed foci and delivered these therapeutic molecules in situ. NSCs transduced with one, two, or none of these molecules had no or limited effect when injected at the chronic stage of experimental autoimmune encephalomyelitis; cocktail-producing NSCs, in contrast, mediated the most effective recovery through inducing M2 macrophages/microglia, reducing astrogliosis, and promoting axonal integrity and endogenous oligodendrocyte/neuron differentiation. These engineered NSCs simultaneously target major mechanisms underlying chronicity of multiple sclerosis (MS) and encephalomyelitis (EAE), thus representing a novel and potentially effective therapy for the chronic stage of MS, for which there is currently no treatment available
    corecore