9 research outputs found
The thermal decomposition of studtite: analysis of the amorphous phase
Studtite is known to exist at the back-end of the nuclear fuel cycle as an intermediate phase formed in the reprocessing of spent nuclear fuel. In the thermal decomposition of studtite, an amorphous phase is obtained at calcination temperatures between 200 and 500 °C. This amorphous compound, referred to elsewhere in the literature as U2O7, has been characterised by analytical spectroscopic methods. The local structure of the amorphous compound has been found to contain uranyl bonding by X-ray absorption near edge (XANES), Fourier transform infrared and Raman spectroscopy. Changes in bond distances in the uranyl group are discussed with respect to studtite calcination temperature. The reaction of the amorphous compound with water to form metaschoepite is also discussed and compared with the structure of schoepite and metaschoepite by X-ray diffraction. A novel schematic reaction mechanism for the thermal decomposition of studtite is proposed
X-ray fluorescence from the element with atomic number Z = 120
Accepted for publication in Physical Review LettersAn atomic clock based on X-ray fluorescence yields has been used to estimate the mean characteristic time for fusion followed by fission in reactions 238U + 64Ni at 6.6 MeV/A. Inner shell vacancies are created during the collisions in the electronic structure of the possibly formed Z=120 compound nuclei. The filling of these vacancies accompanied by X-ray emission with energies characteristic of Z=120 can take place only if the atomic transitions occur before nuclear fission. Therefore, the X-ray yield characteristic of the united atom with 120 protons is strongly related to the fission time and to the vacancy lifetimes. K X-rays from the element with Z = 120 have been unambiguously identified from a coupled analysis of the involved nuclear reaction mechanisms and of the measured photon spectra. A minimum mean fission time _f$ = 2.5×10−18s has been deduced for Z=120 from the measured X-ray multiplicity
Decay of excited nuclei produced in the 78;82Kr+40Ca reactions at 5.5 MeV/nucleon
International audienc
Probing model interstellar grain surfaces with small molecules
Temperature-programmed desorption and reflection-absorption infrared spectroscopy have been used to explore the interaction of oxygen (O2), nitrogen (N2), carbon monoxide (CO) and water (H2O) with an amorphous silica film as a demonstration of the detailed characterization of the silicate surfaces that might be present in the interstellar medium. The simple diatomic adsorbates are found to wet the silica surface and exhibit first-order desorption kinetics in the regime up to monolayer coverage. Beyond that, they exhibit zero-order kinetics as might be expected for sublimation of bulk solids. Water, in contrast, does not wet the silica surface and exhibits zero-order desorption kinetics at all coverages consistent with the formation of an islanded structure. Kinetic parameters for use in astrophysical modelling were obtained by inversion of the experimental data at sub-monolayer coverages and by comparison with models in the multilayer regime. Spectroscopic studies in the sub-monolayer regime show that the C–O stretching mode is at around 2137 cm−1 (5.43 μm), a position consistent with a linear surface–CO interaction, and is inhomogenously broadened as resulting from the heterogeneity of the surface. These studies also reveal, for the first time, direct evidence for the thermal activation of diffusion, and hence de-wetting, of H2O on the silica surface. Astrophysical implications of these findings could account for a part of the missing oxygen budget in dense interstellar clouds, and suggest that studies of the sub-monolayer adsorption of these simple molecules might be a useful probe of surface chemistry on more complex silicate materials
CO2 trapping in amorphous H2O ice: Relevance to polar mesospheric cloud particles
Polar mesospheric clouds form in the summer high latitude mesopause region and are primarily comprised of H2O ice, forming at temperatures below 150 K. Average summertime temperatures in the polar mesosphere (78°N) are approximately 125 K and can be driven lower than 100 K by gravity waves. Under these extreme temperature conditions and given the relative mesospheric concentrations of CO2 and H2O (~360 ppmv and ~10 ppmv, respectively) it has been hypothesised that CO2 molecules could become trapped within amorphous mesospheric ice particles, possibly making a significant contribution to the total condensed volume. Studies of CO2 trapping in co-deposited gas mixtures of increasing CO2:H2O ratio (deposited at 98 K) were analysed via temperature programmed desorption. CO2 trapping was found to be negligible when the H2O flux to the surface was reduced to 4.8×1013 molecules cm−2 s−1. This corresponds to an average of 0.4 H2O molecules depositing on an adsorbed CO2 molecule and thereby trapping it in amorphous ice. Extrapolating the experimental data to mesospheric conditions shows that a mesospheric temperature of 100 K would be required (at a maximum mesospheric H2O concentration of 10 ppmv) in order to trap CO2 in the ice particles. Given the rarity of this temperature being reached in the mesosphere, this process would be an unlikely occurrence
Asymmetric Fission in the 78Kr+40Ca reactions at 5.5 MeV/nucleon
The cross section, kinetic energy distribution and angular distribution of fragments with atomic number 3 ≤ Z ≤ 28 emitted in the reaction 78Kr + 40Ca at the bombarding energy of 5.5 MeV/nucleon and coincidence between light charged particles and fragments were measured by means of the 4π-INDRA array to study the decay mechanism of medium mass excited nucleus. Global features indicate a high degree of relaxation and are compatible with a binary fission from compound nucleus. The mean value of the kinetic energy distributions of fragments indicates dominance of Coulomb interaction, while the width of the distribution signals large fluctuations. Inclusive cross-section distributions of fragments with charge 3 ≤ Z ≤ 28 are bell-shaped and a strong even-odd-staggering (o-es) is observed for 3 ≤ Z ≤ 12. Coincidence measurements suggest that the light partners in very asymmetric fission are emitted at excitation energies below the particle emission thresholds. Data were confronted to the predictions of statistical model describing the decay of compound nuclei by emission of light particles and fragments. Calculations assuming spherical fission fragments and finite-range liquid drop fission barriers are not able to explain the experimental features. Attempts have been made to improve the agreement with experimental data. The analysis indicates the strong influence of the shape parameterization of the potential energy surface in describing the fission process of intermediate mass compound nuclei
Decay of excited nuclei produced in Kr + Ca reactions at 5.5 MeV/nucleon
2 tables, 14 figures, Expérience GANIL/INDRADecay modes of excited nuclei are investigated in Kr + Ca reactions at 5.5 MeV/nucleon. Charged products were measured by means of the INDRA array. Kinetic-energy spectra and angular distributions of fragments with atomic number 3 28 indicate a high degree of relaxation and are compatible with a fission-like phenomenon. Persistence of structure effects is evidenced from elemental cross-sections () as well as a strong odd-even-staggering (o-e-s) of the light-fragment yields. The magnitude of the staggering does not significantly depend on the neutron content of the emitting system. Fragment-particle coincidences suggest that the light partners in very asymmetric fission are emitted either cold or at excitation energies below the particle emission thresholds. The evaporation residue cross-section of the Kr + Ca reaction is slightly higher than the one measured in Kr + Ca reaction. The fission-like component is larger by 25\% for the reaction having the lowest neutron-to-proton ratio. These experimental features are confronted to the predictions of theoretical models. The Hauser-Feshbach approach including the emission of fragments up to = 14 in their ground states as well as excited states does not account for the main features of . For both reactions, the transition-state formalism reasonably reproduces the -distribution of the fragments with charge 12 28. However, this model strongly overestimates the light-fragment cross-sections and does not explain the o-e-s of the yields for 6 10. The shape of the whole -distribution and the o-e-s of the light-fragment yields are satisfactorily reproduced within the dinuclear system framework which treats the competition between evaporation, fusion-fission and quasifission processes. The model suggests that heavy fragments come mainly from quasifission while light fragments are predominantly populated by fusion. An underestimation of the cross sections for 16 22 could signal a mechanism in addition to the capture process
From Light to Heavy Nuclear Systems, Production and Decay of Fragments Studied with Powerful Arrays
International audienceReactions between heavy-ions at various energy regimes produce many nuclear fragments which can be populatedin highly excited states. The study of these fragments, detected at the end of their particle decay, is importantto investigate nuclear forces and structure effects. In recent years there have been many efforts to extend thesestudies towards the drip-lines, i.e. to systems far from the -stability valley, by using accelerated radioactivebeams. The development of such infrastructures is accompanied by the development of more powerful detectorsand associated electronics, capable to identify ions with very different sizes and kinetic energies. Here we give twoexamples which show how advanced arrays can contribute to the studies on nuclear phenomena. The examplescome from the European FAZIA collaboration and from recent campaigns with the GARFIELD apparatus, thelatter in operation at the INFN Legnaro Laboratory (Italy) where the SPES RIB facility is under constructio