611 research outputs found

    Development and Validation of a Sensitive Entropy-Based Measure for the Water Maze

    Get PDF
    In the water maze, mice are trained to navigate to an escape platform located below the water's surface, and spatial learning is most commonly evaluated in a probe test in which the platform is removed from the pool. While contemporary tracking software provides precise positional information of mice for the duration of the probe test, existing performance measures (e.g., percent quadrant time, platform crossings) fail to exploit fully the richness of this positional data. Using the concept of entropy (H), here we develop a new measure that considers both how focused the search is and the degree to which searching is centered on the former platform location. To evaluate how H performs compared to existing measures of water maze performance we compiled five separate databases, containing more than 1600 mouse probe tests. Random selection of individual trials from respective databases then allowed us to simulate experiments with varying sample and effect sizes. Using this Monte Carlo-based method, we found that H outperformed existing measures in its ability to detect group differences over a range of sample or effect sizes. Additionally, we validated the new measure using three models of experimentally induced hippocampal dysfunction: (1) complete hippocampal lesions, (2) genetic deletion of αCaMKII, a gene implicated in hippocampal behavioral and synaptic plasticity, and (3) a mouse model of Alzheimer's disease. Together, these data indicate that H offers greater sensitivity than existing measures, most likely because it exploits the richness of the precise positional information of the mouse throughout the probe test

    Fragment size correlations in finite systems - application to nuclear multifragmentation

    Full text link
    We present a new method for the calculation of fragment size correlations in a discrete finite system in which correlations explicitly due to the finite extent of the system are suppressed. To this end, we introduce a combinatorial model, which describes the fragmentation of a finite system as a sequence of independent random emissions of fragments. The sequence is accepted when the sum of the sizes is equal to the total size. The parameters of the model, which may be used to calculate all partition probabilities, are the intrinsic probabilities associated with the fragments. Any fragment size correlation function can be built by calculating the ratio between the partition probabilities in the data sample (resulting from an experiment or from a Monte Carlo simulation) and the 'independent emission' model partition probabilities. This technique is applied to charge correlations introduced by Moretto and collaborators. It is shown that the percolation and the nuclear statistical multifragmentaion model ({\sc smm}) are almost independent emission models whereas the nuclear spinodal decomposition model ({\sc bob}) shows strong correlations corresponding to the break-up of the hot dilute nucleus into nearly equal size fragments

    Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice

    Get PDF
    Background: Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavioral alterations during adulthood. Results: Mice drank a 10% ethanol so

    Yield scaling, size hierarchy and fluctuations of observables in fragmentation of excited heavy nuclei

    Get PDF
    Multifragmentation properties measured with INDRA are studied for single sources produced in Xe+Sn reactions in the incident energy range 32-50 A MeV and quasiprojectiles from Au+Au collisions at 80 A MeV. A comparison for both types of sources is presented concerning Fisher scaling, Zipf law, fragment size and fluctuation observables. A Fisher scaling is observed for all the data. The pseudo-critical energies extracted from the Fisher scaling are consistent between Xe+Sn central collisions and Au quasi-projectiles. In the latter case it also corresponds to the energy region at which fluctuations are maximal. The critical energies deduced from the Zipf analysis are higher than those from the Fisher analysis.Comment: 30 pages, accepted for publication in Nuclear Physics A, references correcte

    Transition from participant to spectator fragmentation in Au+Au reaction between 60 AMeV and 150 AMeV

    Full text link
    Using the quantum molecular dynamics approach, we analyze the results of the recent INDRA Au+Au experiments at GSI in the energy range between 60 AMeV and 150 AMeV. It turns out that in this energy region the transition toward a participant-spectator scenario takes place. The large Au+Au system displays in the simulations as in the experiment simultaneously dynamical and statistical behavior which we analyze in detail: The composition of fragments close to midrapidity follows statistical laws and the system shows bi-modality, i.e. a sudden transition between different fragmentation pattern as a function of the centrality as expected for a phase transition. The fragment spectra at small and large rapidities, on the other hand, are determined by dynamics and the system as a whole does not come to equilibrium, an observation which is confirmed by FOPI experiments for the same system.Comment: published versio

    Beacon Virtua: A Virtual Reality Simulation Detailing the Recent and Shipwreck History of Beacon Island, Western Australia

    Get PDF
    Beacon Virtua is a project to document and virtually preserve a historically significant offshore island as a virtual reality experience. In 1629, survivors of the wreck of VOC ship Batavia took refuge on Beacon Island, Western Australia, followed by a mutiny and massacre. In the 1950s the island became the base of a successful fishing industry, and in 1963 human remains from Batavia were located. The fishing community has recently been moved off the island to protect and preserve the site and allow a thorough archaeological investigation of the island. Beacon Virtua exposes users to the history of both the shipwreck survivors and the fishing community. The project uses the virtual environment development software Unity to present a simulation of the island, with 3D models of buildings and jetties, photogrammetric 3D reconstructions of graves and other features, 360° photographic panoramas, and information on the history of the island. The experience has been made available on a wide range of different platforms including via a web-page, as part of an exhibition, and on head mounted displays (VR headsets). This chapter discusses the features included in Beacon Virtua, the storytelling techniques used in the simulation, the challenges encountered and solutions used during the project

    Bimodality - a general feature of heavy ion reactions

    Full text link
    Recently, is has been observed that events with the {\it same} total transverse energy of light charged particles (LCP) in the quasi target region, E⊄12QTE_{\perp 12}^{QT}, show two quite distinct reaction scenarios in the projectile domain: multifragmentation and residue production. This phenomenon has been dubbed "bimodality". Using Quantum Molecular Dynamics calculations we demonstrate that this observation is very general. It appears in collisions of all symmetric systems larger than Ca and at beam energies between 50 A.MeV and 600 A.MeV and is due to large fluctuations of the impact parameter for a given E⊄12QTE_{\perp 12}^{QT}. Investigating in detail the E⊄12QTE_{\perp 12}^{QT} bin in which both scenarios are present, we find that neither the average fragment momenta nor the average transverse and longitudinal energies of fragments show the behavior expected from a system in statistical equilibrium, in experiment as well as in QMD simulations. On the contrary, the experimental as well as the theoretical results point towards a fast process. This observation questions the conjecture that the observed bimodality is due to the coexistence of 2 phases at a given temperature in finite systems.Comment: accepted PR

    Pion radii in nonlocal chiral quark model

    Full text link
    The electromagnetic radius of the charged pion and the transition radius of the neutral pion are calculated in the framework of the nonlocal chiral quark model. It is shown in this model that the contributions of vector mesons to the pion radii are noticeably suppressed in comparison with a similar contribution in the local Nambu--Jona-Lasinio model. The form-factor for the process gamma*pi+pi- is calculated for the -1 GeV^2<q^2<1.6 GeV^2. Our results are in satisfactory agreement with experimental data.Comment: 7 pages, 7 figure

    Gross Properties and Isotopic Phenomena in Spectator Fragmentation

    Get PDF
    A systematic study of isotopic effects in the break-up of projectile spectators at relativistic energies has been performed with the ALADiN spectrometer at the GSI laboratory. Searching for signals of criticality in the fragment production we have applied the model independent universal fluctuations theory already proposed to track criticality signals in multifragmentation to our data. The fluctuation of the largest fragment charge and of the asymmetry of the two and three largest fragments and their bimodal distribution have also been analysed.Comment: 6 pages, 4 figures, IX International Conference on Nucleus-Nucleus Collisions, Rio de Janeiro, Brazil, August 28 - September 1, 200
    • 

    corecore