35 research outputs found

    Adaptive explanations for sensitive windows in development

    Full text link
    Development in many organisms appears to show evidence of sensitive windows—periods or stages in ontogeny in which individual experience has a particularly strong influence on the phenotype (compared to other periods or stages). Despite great interest in sensitive windows from both fundamental and applied perspectives, the functional (adaptive) reasons why they have evolved are unclear. Here we outline a conceptual framework for understanding when natural selection should favour changes in plasticity across development. Our approach builds on previous theory on the evolution of phenotypic plasticity, which relates individual and population differences in plasticity to two factors: the degree of uncertainty about the environmental conditions and the extent to which experiences during development (‘cues’) provide information about those conditions. We argue that systematic variation in these two factors often occurs within the lifetime of a single individual, which will select for developmental changes in plasticity. Of central importance is how informational properties of the environment interact with the life history of the organism. Phenotypes may be more or less sensitive to environmental cues at different points in development because of systematic changes in (i) the frequency of cues, (ii) the informativeness of cues, (iii) the fitness benefits of information and/or (iv) the constraints on plasticity. In relatively stable environments, a sensible null expectation is that plasticity will gradually decline with age as the developing individual gathers information. We review recent models on the evolution of developmental changes in plasticity and explain how they fit into our conceptual framework. Our aim is to encourage an adaptive perspective on sensitive windows in development

    Adaptive rationality: An evolutionary perspective on cognitive bias

    Get PDF
    A casual look at the literature in social cognition reveals a vast collection of biases, errors, violations of rational choice, and failures to maximize utility. One is tempted to draw the conclusion that the human mind is woefully muddled. We present a three-category evolutionary taxonomy of evidence of biases: biases are (a) heuristics, (b) error management effects, or (c) experimental artifacts. We conclude that much of the research on cognitive biases can be profitably reframed and understood in evolutionary terms. An adaptationist perspective suggests that the mind is remarkably well designed for important problems of survival and reproduction, and not fundamentally irrational. Our analysis is not an apologia intended to place the rational mind on a pedestal for admiration. Rather, it promises practical outcomes including a clearer view of the architecture of systems for judgment and decision making, and exposure of clashes between adaptations designed for the ancestral past and the demands of the present

    A consensus-based transparency checklist

    Get PDF
    We present a consensus-based checklist to improve and document the transparency of research reports in social and behavioural research. An accompanying online application allows users to complete the form and generate a report that they can submit with their manuscript or post to a public repository

    of incremental development Balancing sampling and specialization: an adaptationist model "Data Supplement" References Balancing sampling and specialization: an adaptationist model of incremental development

    No full text
    Development is typically a constructive process, in which phenotypes incrementally adapt to local ecologies. Here, we present a novel model in which natural selection shapes developmental systems based on the evolutionary ecology, and these systems adaptively guide phenotypic development. We assume that phenotypic construction is incremental and trades off with sampling cues to the environmental state. We computed the optimal developmental programmes across a range of evolutionary ecological conditions. Using these programmes, we simulated distributions of mature phenotypes. Our results show that organisms sample the environment most extensively when cues are moderately, not highly, informative. When the developmental programme relies heavily on sampling, individuals transition from sampling to specialization at different times in ontogeny, depending on the consistency of their sampled cue set; this finding suggests that stochastic sampling may result in individual differences in plasticity itself. In addition, we find that different selection pressures may favour similar developmental mechanisms, and that organisms may incorrectly calibrate development despite stable ontogenetic environments. We hope our model will stimulate adaptationist research on the constructive processes guiding development
    corecore