21 research outputs found

    Latitude dictates plant diversity effects on instream decomposition

    Get PDF
    Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113 degrees of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature

    Bioassessment of multiple stressors in Afrotropical rivers: Evaluating the performance of a macroinvertebrate-based index of biotic integrity, diversity, and regional biotic indices

    Get PDF
    Many streams and rivers outside conservation areas across the Afrotropics face multiple stressors from land use change, urbanization, and excessive water withdrawals. Thus, there is a need to develop cost-effective tools for assessing and monitoring ecological changes to inform management decisions. Studies utilizing macroinvertebrate communities as indicators of the ecological condition of streams and rivers in the Afrotropics use diverse methods, including diversity, richness, biotic and multimetric indices. However, some of these indices are region- or country-specific, which limits their general use across multiple regions or countries. In this study, we address this challenge by testing and comparing the performance of diversity and richness indices (e.g., Shannon-Wiener and Simpson), regional biotic indices (the African Scoring System Version 5 [SASS5], Tanzanian River Scoring System [TARISS] and a biotic index developed for the Ethiopian highlands [ETHbios]), and a macroinvertebrate-based index of biotic integrity (M-IBI) in assessing the ecological condition of Afrotropical rivers with the transboundary Mara River, Kenya and Tanzania, as a case study. In this study, we analyzed water and habitat quality degradation caused by multiple stressors such as land use change, organic pollution and flow alteration and the corresponding responses in macroinvertebrate communities. We utilized macroinvertebrates data collected from 143 sites covering the entire gradient of the river and its major tributaries in Kenya and Tanzania. To develop the M-IBI, we used 12 metrics that describe macroinvertebrate community richness, composition, tolerance to disturbances (indicator taxa), and the composition of functional feeding groups. Although all the biotic indices were sensitive to poor water quality and human disturbance of the river, the M-IBI performed better than biotic indices (SASS5, Tanzanian River Scoring System, and Ethiopian highlands), diversity and richness indices by having a higher discriminatory ability of site categories according to different levels and types of disturbance. Diversity and richness indices performed poorly and failed to discriminate between stressor gradients in the river. This study demonstrates a need for testing and evaluating indices or protocols before adoption and use in biomonitoring streams and rivers in other countries and regions. There is an even greater need to assess the tolerance of macroinvertebrate taxa before inclusion in biotic indices for improved performance as discriminators of multiple stressors

    Bioassessment of multiple stressors in Afrotropical rivers: Evaluating the performance of a macroinvertebrate-based index of biotic integrity, diversity, and regional biotic indices

    No full text
    Many streams and rivers outside conservation areas across the Afrotropics face multiple stressors from land use change, urbanization, and excessive water withdrawals. Thus, there is a need to develop cost-effective tools for assessing and monitoring ecological changes to inform management decisions. Studies utilizing macroinvertebrate communities as indicators of the ecological condition of streams and rivers in the Afrotropics use diverse methods, including diversity, richness, biotic and multimetric indices. However, some of these indices are region- or country-specific, which limits their general use across multiple regions or countries. In this study, we address this challenge by testing and comparing the performance of diversity and richness indices (e.g., Shannon-Wiener and Simpson), regional biotic indices (the African Scoring System Version 5 [SASS5], Tanzanian River Scoring System [TARISS] and a biotic index developed for the Ethiopian highlands [ETHbios]), and a macroinvertebrate-based index of biotic integrity (M-IBI) in assessing the ecological condition of Afrotropical rivers with the transboundary Mara River, Kenya and Tanzania, as a case study. In this study, we analyzed water and habitat quality degradation caused by multiple stressors such as land use change, organic pollution and flow alteration and the corresponding responses in macroinvertebrate communities. We utilized macroinvertebrates data collected from 143 sites covering the entire gradient of the river and its major tributaries in Kenya and Tanzania. To develop the M-IBI, we used 12 metrics that describe macroinvertebrate community richness, composition, tolerance to disturbances (indicator taxa), and the composition of functional feeding groups. Although all the biotic indices were sensitive to poor water quality and human disturbance of the river, the M-IBI performed better than biotic indices (SASS5, Tanzanian River Scoring System, and Ethiopian highlands), diversity and richness indices by having a higher discriminatory ability of site categories according to different levels and types of disturbance. Diversity and richness indices performed poorly and failed to discriminate between stressor gradients in the river. This study demonstrates a need for testing and evaluating indices or protocols before adoption and use in biomonitoring streams and rivers in other countries and regions. There is an even greater need to assess the tolerance of macroinvertebrate taxa before inclusion in biotic indices for improved performance as discriminators of multiple stressors.</p

    Trophic structure of an African savanna river and organic matter inputs by large terrestrial herbivores: A stable isotope approach

    No full text
    © 2018 John Wiley & Sons Ltd Knowledge of trophic structure is important to understand sources and pathways of energy resources in community ecology and to identify determinants of ecosystem changes. Yet, little is known from rivers of African savanna receiving large inputs of terrestrial organic matter and nutrients by large mammalian herbivores. We used Stable Isotope (δ13C and δ15N) Bayesian Ellipses in R (SIBER) and Layman's community-wide metrics to describe seasonal variation in trophic niches and trophic structures in midorder river reaches in the Mara River (Kenya) that differed in environmental conditions (agricultural vs. forested) and amounts of organic matter and nutrients (low vs. high inputs by livestock and hippopotami, Hippopotamus amphibius). These analyses were supplemented with data on the trophic diversity of macroinvertebrate functional feeding groups (FFGs) and fish trophic guilds. The δ13C and δ15N of basal resources and consumers differed between sites and changed with seasons. Sites in agricultural areas that were utilised by livestock and a site with hippopotami had higher δ13C than the forested site due to the presence of C4 carbon from egestion and excretion by the grazers. The forested site recorded the most taxon-rich and trophic-diverse invertebrate community, suggesting both autochthonous and allochthonous sources of energy were available. Agricultural sites and the site with hippopotami recorded high abundances of collector taxa in response to large inputs of organic matter. Fish trophic guilds were less diverse and were dominated by insectivores. The food web at the forested site had the widest trophic niche size and highest isotopic trophic diversity compared to sites in areas with large mammalian herbivores. Invertebrate and fish trophic niche sizes changed according to food resources varying with space and time. Invertebrates had higher δ13C values during the dry season. In contrast, fish showed higher δ13C values during the wet season, and trophic niche sizes were constricted and considerably overlapping, suggesting feeding on a narrow range of food sources with high trophic redundancy. This study showed that increased terrestrial organic matter by large mammalian herbivores affected trophic diversity and niche sizes for aquatic consumers in rivers draining the African savanna. Linking the density of terrestrial large mammalian herbivores to aquatic ecosystem structure and function could help manage their populations sustainably.status: publishe

    Are large herbivores vectors of terrestrial subsidies for riverine food webs?

    No full text
    The tropical savannas of Africa have witnessed a dramatic reduction in native large mammalian herbivore populations. The consequences of these changes for terrestrial-aquatic food-web linkages are poorly documented. We used natural abundances of stable carbon and nitrogen isotopes (δ13C, δ15N) to determine spatial and temporal patterns in the importance of herbivore-mediated subsidies for consumers in the Mara River, Kenya. Potential primary producers (terrestrial C3 and C4 producers and periphyton) and consumers (invertebrates and fish) were collected during dry and wet seasons from different sites along the river, representing a gradient from forested highlands to natural savanna grasslands with high herbivore densities across mixed agricultural and livestock-dominated zones. Bayesian mixing models were used to estimate the relative contributions of terrestrial and algal sources of organic carbon supporting consumer trophic groups. Organic carbon sources differed for consumer groups and sites and with season. Overall, periphyton was the major energy source for most consumer groups during the dry season, but with wide 95% confidence intervals. During the wet season, the importance of terrestrial-derived carbon for consumers increased. The importance of C3 producers declined from 40 and 41% at the forested upper reaches to 20 and 8% at river reaches receiving hippo inputs during the dry and wet seasons, respectively. The reciprocal increase in the importance of C4 producers was higher than expected based on areal cover of riparian vegetation that was mainly C3. The importance of C4 producers notably increased from 18 and 10% at the forested upper reaches to 33 and 58% at river reaches receiving hippo inputs during the dry and wet seasons, respectively. This study highlights the importance of large herbivores to the functioning of riverine ecosystems and the potential implications of their loss from savanna landscapes that currently harbor remnant populations. Although the importance of C4 terrestrial carbon in most river systems has been reported to be negligible, this study shows that its importance can be mediated by large herbivores as vectors, which enhance energetic terrestrial-aquatic linkages in rivers in savanna landscapes

    Assessment of the Ecological Health of Afrotropical Rivers Using Fish Assemblages: A Case Study of Selected Rivers in the Lake Victoria Basin, Kenya

    No full text
    Streams and rivers are globally threatened ecosystems because of increasing levels of exploitation, habitat degradation and other anthropogenic pressures. In the Lake Victoria Basin (LVB) in East Africa, these threats are mostly caused by unsustainable land use; however, the monitoring of ecological integrity of river systems has been hampered by a lack of locally developed indices. This study assessed the health of four rivers (Nzoia, Nyando, Sondu–Miriu and Mara) on the Kenyan side of the LVB using physicochemical water quality parameters and a fish-based index of biotic integrity (IBI). Fish tolerance ranking was derived from principal component analysis of water quality parameters, and the concept of niche breadth (NB). The relationship between fish species and water quality parameters was examined with canonical correspondence analysis, whereas community metrics and stressors were evaluated through Pearson network correlation analysis. Fish species richness, trophic structures, taxonomic composition and species tolerance were used to generate the metrics for fish-based IBI. NB showed that most of the fish species were moderately tolerant to poor water. Moderately tolerant and intolerant fish species were negatively correlated with a high level of organic loading in the Mara River. Fish-based IBI scores for the rivers ranged from 26 to 34, with Sondu–Miriu scoring the lowest. Our results show that the cumulative effect of stressors can adequately rank fish species tolerance according to the disturbance gradients and further develop regional metrics to assess river health. Despite the fact that fish communities are declining, continual management and enforcement of environmental regulations are important, with conservation and management of headwaters and low-order streams being essential while they are still species rich

    Ojunga(Etiegni)_Impact of a Kraft Pulp and Paper Mill Effl uent on

    No full text
    Phytoplankton and macroinvertebrate assemblages were used to assess the impact of a kraft pulp and paper mill effluent in Kenya, on River Nzoia downstream of the discharge point in relation to changes in water quality during May to June and November 2008 (rainy and dry seasons, respectively). Total phosphorus concentration increased from 0.027 mg·L-1 upstream to 0.04 mg·L-1 downstream. Ammonia nitrogen (NH3-N) concentration was 0.51 mg·L-1 upstream and 0.86 mg·L- 1 downstream. Nitrate concentration stood at 1.18 mg·L-1 upstream compared with the 2.23 mg·L-1 downstream. The pH changed from 4.5 to 5.0 upstream to 5.5 to 6.0 downstream, while DO increased from 6.57 to 7.03 mg·L-1 downstream. The BOD5 (biochemical oxygen demand after five days) values remained almost unchanged from 4.63 mg·L-1 upstream to 4.67 mg·L-1 downstream. Taxon composition of phytoplankton and macroinvertebrates correlated with adverse environmental gradients resulting from the mill’s effluent discharge. Overall, there was a shift in composition and abundance of both phytoplankton and macroinvertebrates, with the downstream site recording high numbers of tolerant taxa (i.e., Microcystis sp. and Chironomus sp.). It was recommended that water quality monitoring with effluents of this nature be done using a combination of chemical analysis and biological indicators such as phytoplankton and macroinvertebrate
    corecore