10 research outputs found

    The littoral sea cucumbers (Echinodermata: Holothuroidea) of Guam re-assessed – a diversity curve that still does not asymptote

    Get PDF
    The Micronesian island of Guam has been an important site for the study of littoral tropical holothurian taxonomy for almost 200 years. Despite substantial attention by both expeditions and resident taxonomists, new records are still regularly added to the fauna, demonstrating the challenge of documenting even such large and well-known animals in a small hyper-diverse area. Guam is the type locality of species described by Quoy & Gaimard (1833) and Brandt (1835). A survey of the sea cucumber fauna by Rowe & Doty (1977) led to one of the most used guides for the identification of tropical Pacific sea cucumbers because of the color illustrations of living animals it presented. Focus on echinoderms including holothurians continued with numerous new records added in the following decades. Paulay (2003a) summarized the fauna last, recording 46-47 species. At this stage the fauna was thought to be well documented. A week-long workshop on holothurian systematics sponsored by the National Science Foundation PEET (Partnerships for Enhancing Expertise in Taxonomy) project in 2010 included a substantial field work component, sampling both during the day and night, with snorkeling and SCUBA, across a variety of habitats. This survey yielded 40 species, including numerous new records and even species. Further sampling by Kerr’s lab since the workshop has added additional records. The littoral holothuroid fauna of Guam now comprises 65 species in 17 genera and 7 families. Half of the 19 newly recorded species are the result of unravelling cryptic species in complexes, the other half are based on new collections. Eleven species are known from single specimens, suggesting that much still remains to be learned about the fauna

    The littoral sea cucumber (Echinodermata: Holothuroidea) fauna of Guam re-assessed – a diversity curve that still does not asymptote

    Get PDF
    The Micronesian island of Guam has been an important site for the study of tropical holothuroid taxonomy for almost 200 years. Despite such substantial attention by both expeditions and resident taxonomists, new records are being regularly added to the fauna demonstrating the challenge of documenting the biota of even a small hyper-diverse area. Guam is the type locality of species described by Quoy & Gaimard (1833) and Brandt (1835). A survey of the sea cucumber fauna by Rowe & Doty (1977) led to one of the most used guides for the identification of tropical Pacific sea cucumbers because of the color illustrations of living animals it presented. Focus on echinoderms including holothuroids continued with numerous new records added in the following decades. Paulay (2003) summarized the fauna last, recording 46 species, including 9 new records. At this stage the fauna was thought to be well documented. A week-long workshop on holothuroid systematics sponsered by the NSF PEET project in 2010 included a substantial field work component, sampling both during the day and night, with snorkeling and SCUBA, across a variety of habitats, yielding more than 40 species. 10 of these proved new records for Guam; two proved new to science. Further sampling by Kerr’s lab since the workshop has added two additional species. The holothuroid fauna of Guam thus now comprises 58 species that belong to 17 genera and 7 families. This contribution presents them as an illustrated and briefly annotated checklist

    Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities

    Get PDF
    Outbreaks of the coral-killing seastar Acanthaster planci are intense disturbances that can decimate coral reefs. These events consist of the emergence of large swarms of the predatory seastar that feed on reef-building corals, often leading to widespread devastation of coral populations. While cyclic occurrences of such outbreaks are reported from many tropical reefs throughout the Indo-Pacific, their causes are hotly debated, and the spatio-temporal dynamics of the outbreaks and impacts to reef communities remain unclear. Based on observations of a recent event around the island of Moorea, French Polynesia, we show that Acanthaster outbreaks are methodic, slow-paced, and diffusive biological disturbances. Acanthaster outbreaks on insular reef systems like Moorea's appear to originate from restricted areas confined to the ocean-exposed base of reefs. Elevated Acanthaster densities then progressively spread to adjacent and shallower locations by migrations of seastars in aggregative waves that eventually affect the entire reef system. The directional migration across reefs appears to be a search for prey as reef portions affected by dense seastar aggregations are rapidly depleted of living corals and subsequently left behind. Coral decline on impacted reefs occurs by the sequential consumption of species in the order of Acanthaster feeding preferences. Acanthaster outbreaks thus result in predictable alteration of the coral community structure. The outbreak we report here is among the most intense and devastating ever reported. Using a hierarchical, multi-scale approach, we also show how sessile benthic communities and resident coral-feeding fish assemblages were subsequently affected by the decline of corals. By elucidating the processes involved in an Acanthaster outbreak, our study contributes to comprehending this widespread disturbance and should thus benefit targeted management actions for coral reef ecosystems

    Software Carpentry: Programming with GAP

    No full text
    A half-day introduction to programming in the computational algebra system GAP (http://www.gap-system.org/), developed and maintained by Alexander Konovalov. The template for the Software Carpentry lesson is developed and maintained by the Software Carpentry team
    corecore