36 research outputs found

    Multi-Year Concentrations, Health Risk, and Source Identification, of Air Toxics in the Venice Lagoon

    Get PDF
    This work presents and discusses the results of multi-year measurements of air toxics concentrations from different sites of Venice Lagoon. The aim of the study is the characterization of the air quality of the area, in terms of PM10, PM10-bound metals, and polycyclic aromatic hydrocarbons (PAHs) concentrations, even with the individuation of the related inhalation risk and the identification of the main contaminants' sources. The study moreover provides an important multi-years trend of chemical characterization of the Venice Lagoon. Sampling for PM10 and its metal content was carried out between 2010 and 2015, using low volume sequential aerosol samplers; V, Cr, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Sb, Tl, and Pb were measured by ICP-MS. Samples for PAHs concentration in gas and particle phases were collected from 2010 to 2014, using a high-volume air sampler that allows to sample both phases simultaneously. Samples for PAHs determinations were analyzed by GC-HRMS. Concentrations of air toxics have been studied with the use of enrichment factor, the coefficient of divergence, and the Mann-Kendal test, to individuate eventual local divergences, seasonal and other temporal trends. The inhalation risk assessment has been achieved by the calculation of the cumulative incremental carcinogenic risk for all the air toxics analyzed. The sources' identification and impact evaluation have been carried out using the atmospheric vanadium concentration, to calculate the primary contribution of ship traffic to PM10, the Positive Matrix Factorization, and the Diagnostic Ratios, with the aim of evaluating the impact of construction activities of M.o.S.E, (Modulo Sperimentale Elettromeccanico-Electromechanical Experimental Module) as well as of ship traffic and other possible air toxics' sources. Temporal trends indicate a slight decrease of PAHs and PM10 and of its content of Pb, Zn, Sb. Sharp increases of As and Cd during 2014 and 2015 may be due to local sources like emissions from the construction yard, ship, and road traffic. The cumulative incremental carcinogenic risk was below the unconditionally acceptable risk; Co and As are the most important contributors among metals, followed by Cd and Ni while the PAH congeners that most contribute to the carcinogenic risk were benzo(a)pyrene and dibenzo(A,H)anthracene

    Organic micropollutants in wet and dry depositions in the Venice Lagoon

    Get PDF
    Atmospheric transport is an important route by which pollutants are conveyed from the continents to both coastal and open sea. The role of aerosol deposition in the transport of polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) and polybromodiphenyls ethers (PBDEs) to water and soil systems has been evaluated by measuring their concentrations in wet and dry depositions to the Venice Lagoon. The organic micropollutant flux data indicate that they contribute to the total deposition flux in different ways through wet and dry deposition, showing that the prevalent contribution derives from wet deposition. The fluxes calculated for PBDEs, showed the prevalence of 47, 99, 100 and 183 congeners, both in dry and wet fluxes. With regard to PCBs, the flux of PPCB for wet deposition is in the same order of magnitude of the diffusive flux at the air–water interface. The PAH fluxes obtained in the present study are similar to those obtained in previous studies on the atmospheric bulk deposition to the Venice Lagoon. The ratios between Phe/Ant and Fl/Py indicate that the pollutants sources are pyrolytic, deriving from combustion fuels

    A two-component parameterization of marine ice-nucleating particles based on seawater biology and sea spray aerosol measurements in the Mediterranean Sea

    Get PDF
    Ice-nucleating particles (INPs) have a large impact on the climate-relevant properties of clouds over the oceans. Studies have shown that sea spray aerosols (SSAs), produced upon bursting of bubbles at the ocean surface, can be an important source of marine INPs, particularly during periods of enhanced biological productivity. Recent mesocosm experiments using natural seawater spiked with nutrients have revealed that marine INPs are derived from two separate classes of organic matter in SSAs. Despite this finding, existing parameterizations for marine INP abundance are based solely on single variables such as SSA organic carbon (OC) or SSA surface area, which may mask specific trends in the separate classes of INP. The goal of this paper is to improve the understanding of the connection between ocean biology and marine INP abundance by reporting results from a field study and proposing a new parameterization of marine INPs that accounts for the two associated classes of organic matter. The PEACETIME cruise took place from 10 May to 10 June 2017 in the Mediterranean Sea. Throughout the cruise, INP concentrations in the surface microlayer (INPSML) and in SSAs (INPSSA) produced using a plunging aquarium apparatus were continuously monitored while surface seawater (SSW) and SML biological properties were measured in parallel. The organic content of artificially generated SSAs was also evaluated. INPSML concentrations were found to be lower than those reported in the literature, presumably due to the oligotrophic nature of the Mediterranean Sea. A dust wet deposition event that occurred during the cruise increased the INP concentrations measured in the SML by an order of magnitude, in line with increases in iron in the SML and bacterial abundances. Increases in INPSSA were not observed until after a delay of 3 days compared to increases in the SML and are likely a result of a strong influence of bulk SSW INPs for the temperatures investigated (T=−18 ∘C for SSAs, T=−15 ∘C for SSW). Results confirmed that INPSSA are divided into two classes depending on their associated organic matter. Here we find that warm (T≄−22 ∘C) INPSSA concentrations are correlated with water-soluble organic matter (WSOC) in the SSAs, but also with SSW parameters (particulate organic carbon, POCSSW and INPSSW,−16C) while cold INPSSA (T<−22 ∘C) are correlated with SSA water-insoluble organic carbon (WIOC) and SML dissolved organic carbon (DOC) concentrations. A relationship was also found between cold INPSSA and SSW nano- and microphytoplankton cell abundances, indicating that these species might be a source of water-insoluble organic matter with surfactant properties and specific IN activities. Guided by these results, we formulated and tested multiple parameterizations for the abundance of INPs in marine SSAs, including a single-component model based on POCSSW and a two-component model based on SSA WIOC and OC. We also altered a previous model based on OCSSA content to account for oligotrophy of the Mediterranean Sea. We then compared this formulation with the previous models. This new parameterization should improve attempts to incorporate marine INP emissions into numerical models

    Comparison of PM10 concentrations and metal content in three different sites of the Venice Lagoon: An analysis of possible aerosol sources

    Get PDF
    The Venice Lagoon is exposed to atmospheric pollutants from industrial activities, thermoelectric power plants, petrochemical plants, incinerator, domestic heating, ship traffic, glass factories and vehicular emissions on the mainland. In 2005, construction began on the mobile dams (MOSE), one dam for each channel connecting the lagoon to the Adriatic Sea as a barrier against high tide. These construction works could represent an additional source of pollutants. PM10 samples were taken on random days between 2007 and 2010 at three different sites: Punta Sabbioni, Chioggia and Malamocco, located near the respective dam construction worksites. Chemical analyses of V, Cr, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Sb, Tl and Pb in PM10 samples were performed by Inductively coupled plasmaquadrupole mass spectrometry (ICP-QMS) and results were used to identify the main aerosol sources. The correlation of measured data with meteorology, and source apportionment, failed to highlight a contribution specifically associated to the emissions of the MOSE construction works. The comparison of the measurements at the three sites showed a substantial homogeneity of metal concentrations in the area. Source apportionment with principal component analysis (PCA) and positive matrix factorization (PMF) showed that a four principal factors model could describe the sources of metals in PM10. Three of them were assigned to specific sources in the area and one was characterised as a source of mixed origin (anthropogenic and crustal). A specific anthropogenic source of PM10 rich in Ni and Cr, active at the Chioggia site, was also identified

    Observation of macroscopic aerosol motion due to thermal creep on chamber walls at low Knudsen number in microgravity

    No full text
    In a rarefied gas the temperature field and the gas motion are closely related, and the temperature field can cause, in a confined flow geometry, a steady flow without the help of external forces. This is due to the creep of the fluid along the walls induced by a wall temperature gradient, as a consequence of the molecular transfer of momentum to the wall. Experiments performed in microgravity conditions in two small cells, with mono- and bi-atomic carrier gases (Ar, N2), and a thermal gradient between upper and bottom horizontal plates, allowed the measurement of the width of the thermal creep and the induced velocity of the gas near the vertical cell wall, due to thermal gradient. In addition, experiments demonstrated the existence of the thermal creep flow in the cells, even with Knudsen number as low as 10-5. The work evidences experimentally, and for the first time, the thermal creep flow in small cells, due to wall temperature gradient, with Knudsen number as low as 10-5. In view of these results, the no-slip boundary conditions of the Navier-Stokes law in the "continuum" regime can be inadequate in non-isothermal flow geometry and in microgravity conditions. © 2014 Elsevier Inc.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Discrepancy between Ice Particles and Ice Nuclei in Mixed Clouds: Critical Aspects

    No full text
    Measurements of ice crystal concentrations in mixed clouds tend to exceed ice nucleus concentrations measured in nearby clear air. This discrepancy is a source of uncertainty in climate change projections as the radiative properties of mixed phase clouds are largely determined by their liquid and ice water content. The ice enhancement process can sometimes depend on secondary ice production, which can occur through ice crystal fracture during sublimation, cloud drop shattering during freezing or following collision with ice particles. However, the discrepancy is observed even in mixed clouds where only primary ice nucleation processes occur. Several hypotheses have been suggested for the observed discrepancies. One factor could be the existence in clouds of pockets of high vapor supersaturation formed by droplet freezing or removal of small droplets by collision with larger droplets, associated with the fact that ice crystal concentration increases with water supersaturation. However, ice crystal concentrations are usually measured at near water saturation. Additional factors could be drop freezing during evaporation and activation of droplet evaporation residues. Here we suggest that a major factor could be underestimation of the contact freezing mode as it is not measured in experimental campaigns and seldom considered in nucleation models. Laboratory experiments give only incomplete answers to the important questions concerning the contact freezing mode, e.g. what fraction of the aerosol particles that come into contact with the droplet surface results in a freezing event and what is the influence of particle type and size, air temperature and relative humidity. As supercooled droplets grow or evaporate in mixed clouds, phoretic forces should play an important role in the collision efficiency between aerosol and droplets, and consequently in contact freezing. A further question is the possibility that aerosol, usually not active in deposition or condensation/ immersion freezing, can trigger ice nucleation by colliding with supercooled droplets

    Influence of supersaturation on the concentration of ice nucleating particles

    Get PDF
    There is a consensus on the increase in ice nucleating particles (INP) concentration from subsaturated to supersaturated water conditions typically associated with clouds (1 ÷ 2%). However, it is important to evaluate the INP concentration trend when water supersaturation further increases, as supercooled clouds contain pockets of high water vapor supersaturation. Three laboratory dry-generated aerosols, two biological (microcrystalline and fibrous cellulose) and one mineral (Arizona test dust), and a field aerosol, sampled on filters, were investigated. Atmospheric aerosol (PM1 and PM10 fractions) was sampled at Capo Granitola (CG, coastal site in Sicily) and the National Research Council (CNR) research area in Bologna (urban background site). The dynamic filter processing chamber (DFPC) was used to explore the ice nucleation of the sampled aerosol in the deposition and condensation freezing modes. Experiments were performed from water subsaturated conditions (water saturation ratio Sw = 0.94) to Sw = 1.1, at T = −22 °C. At CG we considered separately events with a prevalent contribution of marine aerosol, and those showing a contribution of both marine and continental aerosols. An increase in INP concentration, the aerosol activated fraction (AF) and ice nucleation active surface site density (ns) from water subsaturated conditions to Sw = 1.02 was measured in both laboratory and field campaigns. This increase is due to the transition from deposition nucleation to condensation freezing. The highest increases in AF and ns from Sw = 1.02 to Sw = 1.1 were obtained for urban and mixed aerosol and the lowest for marine aerosol. Samplings performed in Bologna showed a high increase in the average INP concentration from PM1 to PM10. Our results show the importance of performing measurements of ice nucleation efficiency for continental aerosol even at supersaturation values higher than those typically associated with clouds, and also considering the contribution of coarse aerosol particles

    Phoretic forces on aerosol particles surrounding an evaporating droplet in microgravity conditions

    No full text
    The work presents the results of an experimental campaign performed at the Drop Tower Facility (Bremen) in microgravity conditions, concerning the scavenging process of an evaporating single droplet in stationary conditions. In the experimental conditions the thermo- and diffusiophoretic forces are the only ones that can determine the scavenging of the aerosol.The research is finalized to help solve the open question concerning the contribution of thermo- and diffusiophoretic forces in aerosol scavenging process due to cloud droplets. Although earlier theoretical and experimental papers have addressed this problem, the results are contradictory and inconclusive.As phoretic forces depend on aerosol diameter and water vapour pressure gradient, experiments were performed by changing the aerosol diameter (range 0.4. Όm-2. Όm) and the water vapour gradient. The experimental results show a prevalence of the diffusiophoretic over thermophoretic force, for the considered aerosol. The measured values of the particle velocities due to phoretic forces increase with increasing aerosol diameter and vapour pressure gradient. © 2013 Elsevier B.V.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Case Study of Particle Number Fluxes and Size Distributions during Nucleation Events in Southeastern Italy in the Summer

    No full text
    Concentrations, size distributions and particle number vertical turbulent fluxes were measured by the eddy-covariance method at an urban background site in southeastern Italy during the summer. CO2/H2O concentrations and fluxes were also determined together with meteorological parameters. Time series show that particles could be divided into two size classes with negatively-correlated temporal trends in diurnal hours: nanoparticles (diameter Dp &lt; 50 nm) and larger particles (Dp &gt; 50 nm). Larger particles include part of the Aitken mode and the accumulation mode. Nanoparticles peaked in diurnal hours due to the presence of several days with nucleation events when particles Dp &gt; 50 nm were at minimum concentrations. Nucleation increased diurnal total particle concentration by a factor of 2.5, reducing mean and median diameters from Dmean = 62.3 ± 1.2 nm and Dmedian = 29.1 ± 1.3 nm on non-event days to Dmean = 35.4 ± 0.6 nm and Dmedian = 15.5 ± 0.3 nm on event days. During nucleation events, particle deposition increased markedly (i.e., downward fluxes), but no significant changes in CO2 concentrations and fluxes were observed. This is compatible with new particle formation above the measurement height and a consequent net transport towards the surface. Correlation with meteorology shows that the formation of new particles is correlated with solar radiation and favored at high wind velocity
    corecore