8 research outputs found

    Composition and Antidiarrheal Activity of Bidens odorata

    Get PDF
    The antidiarrheal effects of chloroform, methanol, and aqueous extracts of Bidens odorata Cav. were investigated at doses of 200 mg/kg on castor-oil-induced diarrhea. The chloroform extract of B. odorata (CBO) reduced diarrhea by 72.72%. The effect of CBO was evaluated on mice with diarrhea induced by castor oil, MgSO4, arachidonic acid, or prostaglandin E2. CBO inhibited the contraction induced by carbachol chloride on ileum (100 ”g/mL) and intestinal transit (200 mg/kg) in Wistar rats. The active fraction of CBO (F4) at doses of 100 mg/kg inhibited the diarrhea induced by castor oil (90.1%) or arachidonic acid (72.9%) but did not inhibit the diarrhea induced by PGE2. The active fraction of F4 (FR5) only was tested on diarrhea induced with castor oil and inhibited this diarrhea by 92.1%. The compositions of F4 and FR5 were determined by GC-MS, and oleic, palmitic, linoleic, and stearic acids were found. F4 and a mixture of the four fatty acids inhibited diarrhea at doses of 100 mg/kg (90.1% and 70.6%, resp.). The results of this study show that B. odorata has antidiarrheal effects, as is claimed by folk medicine, and could possibly be used for the production of a phytomedicine

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    The immunogenetic diversity of the HLA system in Mexico correlates with underlying population genetic structure

    No full text
    International audienc

    The James Webb Space Telescope Mission

    No full text
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit

    Heavy flavour decay muon production at forward rapidity in proton–proton collisions at √s=7 TeV

    No full text
    The production of muons from heavy flavour decays is measured at forward rapidity in proton–proton collisions at √s=7 TeV collected with the ALICE experiment at the LHC. The analysis is carried out on a data sample corresponding to an integrated luminosity Lint=16.5 nb−1. The transverse momentum and rapidity differential production cross sections of muons from heavy flavour decays are measured in the rapidity range 2.5<y<4, over the transverse momentum range 2<pt<12 GeV/c. The results are compared to predictions based on perturbative QCD calculations
    corecore