82 research outputs found

    Prevalence of tuberculous lesion in cattle slaughtered in Mubende district, Uganda

    Get PDF
    BACKGROUND: The aim of this study was to estimate the prevalence of gross pathology suggestive of bovine tuberculosis (TB-like lesions) and evaluate animal’s characteristics associated with the risk of having bovine TB-like lesions among cattle slaughtered in Mubende district in the Uganda cattle corridor. METHOD: We conducted a cross sectional study in which 1,576 slaughtered cattle in Mubende district municipal abattoir underwent post-mortem inspection between August 2013 and January 2014. The presence of bovine TB-like lesions in addition to the animal’s sex, age, breed, and sub-county of origin prior to slaughter were recorded. Associations between the presence of bovine TB-like lesions and animal’s age, sex, breed, and sub-county of origin prior to slaughter were initially analysed using a univariable approach with the chi-square test, and subsequently with a multivariable logistic regression model to assess the combined impact of these animal characteristics with the risk of having a bovine TB-like lesion. Additionally, and as a secondary objective, tissue samples were collected from all carcases that had a bovine TB-like lesion and were processed using standard Mycobacterium culture and identification methods. The culture and acid fast positive samples were tested using Capilia TB-neo® assay to identify Mycobacterium tuberculosis complex (MTC). RESULTS: Of 1,576 carcasses inspected, 9.7% (153/1,576) had bovine TB-like lesions from which Mycobacterium spp and Mycobacterium Tuberculosis Complex (MTC) were isolated in 13 (8.4%) and 12 (7.8%) respectively. Bovine TB-like lesions were more likely to be found in females (OR = 1.49, OR 95% CI: 1.06–2.13) and in older cattle (OR = 2.5, 95% CI: 1.64–3.7). When compared to Ankole cattle, Cross breed (OR = 6.5, OR 95% CI: 3.37–12.7) and Zebu cattle (OR = 2.57, 95% CI: 1.78–3.72) had higher odds of having bovine TB-like lesions. Animals from Kasanda (OR = 2.5, 95% CI: 1.52–4.17) were more likely to have bovine TB-like lesions than cattle from Kasambya. CONCLUSIONS: The findings of study reveals that approximately one in ten slaughtered cattle presents with gross pathology suggestive of bovine TB in Mubende district in the Uganda cattle corridor district, however, we isolated MTC in only 8.4% of these bovine TB-like lesions. Therefore, there is a need to understand the cause of all the other bovine TB-like lesions in order to safe guard diagnostic integrity of meat inspection in Uganda

    Comparative study on the use of specific and heterologous microsatellite primers in the stingless bees Melipona rufiventris and M. mondury (Hymenoptera, Apidae)

    Get PDF
    Due to their high degree of polymorphism, microsatellites are considered useful tools for studying population genetics. Nevertheless, studies of genetic diversity in stingless bees by means of these primers have revealed a low level of polymorphism, possibly the consequence of the heterologous primers used, since in most cases these were not specifically designed for the species under consideration. Herein we compared the number of polymorphic loci and alleles per locus, as well as observed heterozygosity in Melipona rufiventris and M. mondury populations, using specific and heterologous primers. The use of specific primers placed in evidence the greater frequency of polymorphic loci and alleles per locus, besides an expressive increase in observed heterozygosity in M. rufiventris and M. mondury, thereby reinforcing the idea that populational studies should be undertaken by preferably using species-specific microsatellite primers

    Genetic variability in five populations of Partamona helleri (Hymenoptera, Apidae) from Minas Gerais State, Brazil

    Get PDF
    Partamona is a Neotropical genus of stingless bees that comprises 33 species distributed from Mexico to southern Brazil. These bees are well-adapted to anthropic environments and build their nests in several substrates. In this study, 66 colonies of Partamona helleri from five localities in the Brazilian state of Minas Gerais (São Miguel do Anta, Teixeiras, Porto Firme, Viçosa and Rio Vermelho) were analyzed using nine microsatellite loci in order to assess their genetic variability. Low levels of observed (Ho = 0.099-0.137) and expected (H e = 0.128-0.145) heterozygosity were encountered and revealed discrete genetic differentiation among the populations (F ST = 0.025). AMOVA further showed that most of the total genetic variation (94.24%) in P. helleri was explained by the variability within local populations

    Unequal allelic expression of wild-type and mutated β-myosin in familial hypertrophic cardiomyopathy

    Get PDF
    Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant disease, which in about 30% of the patients is caused by missense mutations in one allele of the β-myosin heavy chain (β-MHC) gene (MYH7). To address potential molecular mechanisms underlying the family-specific prognosis, we determined the relative expression of mutant versus wild-type MYH7-mRNA. We found a hitherto unknown mutation-dependent unequal expression of mutant to wild-type MYH7-mRNA, which is paralleled by similar unequal expression of β-MHC at the protein level. Relative abundance of mutated versus wild-type MYH7-mRNA was determined by a specific restriction digest approach and by real-time PCR (RT-qPCR). Fourteen samples from M. soleus and myocardium of 12 genotyped and clinically well-characterized FHC patients were analyzed. The fraction of mutated MYH7-mRNA in five patients with mutation R723G averaged to 66 and 68% of total MYH7-mRNA in soleus and myocardium, respectively. For mutations I736T, R719W and V606M, fractions of mutated MYH7-mRNA in M. soleus were 39, 57 and 29%, respectively. For all mutations, unequal abundance was similar at the protein level. Importantly, fractions of mutated transcripts were comparable among siblings, in younger relatives and unrelated carriers of the same mutation. Hence, the extent of unequal expression of mutated versus wild-type transcript and protein is characteristic for each mutation, implying cis-acting regulatory mechanisms. Bioinformatics suggest mRNA stability or splicing effectors to be affected by certain mutations. Intriguingly, we observed a correlation between disease expression and fraction of mutated mRNA and protein. This strongly suggests that mutation-specific allelic imbalance represents a new pathogenic factor for FHC

    Activation of the Innate Immune Response against DENV in Normal Non-Transformed Human Fibroblasts

    Get PDF
    In this work, we demonstrate that that both human whole skin and freshly isolated skin fibroblasts are productively infected with Dengue virus (DENV). In addition, primary skin fibroblast cultures were established and subsequently infected with DENV-2; we showed in these cells the presence of the viral antigen NS3, and we found productive viral infection by a conventional plaque assay. Of note, the infectivity rate was almost the same in all the primary cultures analyzed from different donors. The skin fibroblasts infected with DENV-2 underwent signaling through both TLR3 and RIG-1, but not Mda5, triggering up-regulation of IFNβ, TNFα, defensin 5 (HB5) and β defensin 2 (HβD2). In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3), but not interferon regulatory factor 7 IRF7, when compared with mock-infected fibroblasts. Our data suggest that fibroblasts might even participate producing mediators involved in innate immunity that activate and contribute to the orchestration of the local innate responses. This work is the first evaluating primary skin fibroblast cultures obtained from different humans, assessing both their susceptibility to DENV infection as well as their ability to produce molecules crucial for innate immunity

    Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum

    Get PDF
    The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A2A receptor (A2AR) and cannabinoid CB1 receptor (CB1R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A2AR and CB1R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A2AR-CB1R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically-modified animal models, together with biochemical and pharmacological approaches, we provide a high resolution expression map and a detailed functional characterization of A2AR-CB1R heteromers in the dorsal striatum. Specifically, our data unveil that the A2AR-CB1R heteromer (i) is essentially absent from corticostriatal projections and striatonigral neurons, and, instead, is largely present in striatopallidal neurons, (ii) displays a striking G protein-coupled signaling profile, where co-stimulation of both receptors leads to strongly reduced downstream signaling, and (iii) undergoes an unprecedented dysfunction in Huntington’s disease, an archetypal disease that affects striatal neurons. Altogether, our findings may open a new conceptual framework to understand the role of coordinated adenosine-endocannabinoid signaling in the indirect striatal pathway, which may be relevant in motor function and neurodegenerative diseases

    Inhibitor of apoptosis proteins, NAIP, cIAP1 and cIAP2 expression during macrophage differentiation and M1/M2 polarization

    Get PDF
    Monocytes and macrophages constitute the first line of defense of the immune system against external pathogens. Macrophages have a highly plastic phenotype depending on environmental conditions; the extremes of this phenotypic spectrum are a pro-inflammatory defensive role (M1 phenotype) and an anti-inflammatory tissue-repair one (M2 phenotype). The Inhibitor of Apoptosis (IAP) proteins have important roles in the regulation of several cellular processes, including innate and adaptive immunity. In this study we have analyzed the differential expression of the IAPs, NAIP, cIAP1 and cIAP2, during macrophage differentiation and polarization into M1 or M2. In polarized THP-1 cells and primary human macrophages, NAIP is abundantly expressed in M2 macrophages, while cIAP1 and cIAP2 show an inverse pattern of expression in polarized macrophages, with elevated expression levels of cIAP1 in M2 and cIAP2 preferentially expressed in M1. Interestingly, treatment with the IAP antagonist SMC-LCL161, induced the upregulation of NAIP in M2, the downregulation of cIAP1 in M1 and M2 and an induction of cIAP2 in M1 macrophages.This work was supported by Universidad de Granada, Plan Propio 2015;#P3B: FAM, VMC (http://investigacion.ugr.es/pages/planpropio/2015/ resoluciones/p3b_def_28072015); Universidad de Granada CEI BioTic;#CAEP2-84: VMC (http:// biotic.ugr.es/pages/resolucionprovisional enseaanzapractica22demayo/!); and Canadian nstitutes of Health Research;#231421, #318176, #361847: STB, ECL, RK (http://www.cihr-irsc.gc. ca/e/193.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Molecular Identification of Atlantic Bluefin Tuna (Thunnus thynnus, Scombridae) Larvae and Development of a DNA Character-Based Identification Key for Mediterranean Scombrids

    Get PDF
    The Atlantic bluefin tuna, Thunnus thynnus, is a commercially important species that has been severely over-exploited in the recent past. Although the eastern Atlantic and Mediterranean stock is now showing signs of recovery, its current status remains very uncertain and as a consequence their recovery is dependent upon severe management informed by rigorous scientific research. Monitoring of early life history stages can inform decision makers about the health of the species based upon recruitment and survival rates. Misidentification of fish larvae and eggs can lead to inaccurate estimates of stock biomass and productivity which can trigger demands for increased quotas and unsound management conclusions. Herein we used a molecular approach employing mitochondrial and nuclear genes (CO1 and ITS1, respectively) to identify larvae (n = 188) collected from three spawning areas in the Mediterranean Sea by different institutions working with a regional fisheries management organization. Several techniques were used to analyze the genetic sequences (sequence alignments using search algorithms, neighbour joining trees, and a genetic character-based identification key) and an extensive comparison of the results is presented. During this process various inaccuracies in related publications and online databases were uncovered. Our results reveal important differences in the accuracy of the taxonomic identifications carried out by different ichthyoplanktologists following morphology- based methods. While less than half of larvae provided were bluefin tuna, other dominant taxa were bullet tuna (Auxis rochei), albacore (Thunnus alalunga) and little tunny (Euthynnus alletteratus). We advocate an expansion of expertise for a new generation of morphology-based taxonomists, increased dialogue between morphology-based and molecular taxonomists and increased scrutiny of public sequence databases.Versión del editor4,411
    corecore