70 research outputs found

    Water and lysozyme: Some results from the bending and stretching vibrational modes

    Get PDF
    The dynamic or glass transition in biomolecules is important to their functioning. Also essential is the transition between the protein native state and the unfolding process. To better understand these transitions, we use Fourier transform infrared spectroscopy to study the vibrational bending and stretching modes of hydrated lysozymes across a wide temperature range. We find that these transitions are triggered by the strong hydrogen bond coupling between the protein and hydration water. More precisely, we demonstrate that in both cases the water properties dominate the evolution of the system. We find that two characteristic temperatures are relevant: in the supercooled regime of confined water, the fragile-to-strong dynamic transition occurs at T[subscript L], and in the stable liquid phase, T* ≈ 315 ± 5 K characterizes the behavior of both isothermal compressibility K[subscript T] (T,P) and the coefficient of thermal expansion a[subscript P] (T,P)

    Molecular degradation of ancient documents revealed by 1H^1H HR-MAS NMR spectroscopy

    Get PDF
    For centuries mankind has stored its knowledge on paper, a remarkable biomaterial made of natural cellulose fibers. However, spontaneous cellulose degradation phenomena weaken and discolorate paper over time. The detailed knowledge of products arising from cellulose degradation is essential in understanding deterioration pathways and in improving durability of cultural heritage. In this study, for the first time, products of cellulose degradation were individually detected in solid paper samples by means of an extremely powerful proton HR-MAS NMR set-up, in combination to a wise use of both ancient and, as reference, artificially aged paper samples. Carboxylic acids, in addition to more complex dicarboxylic and hydroxy-carboxylic acids, were found in all samples studied. Since these products can catalyze further degradation, their knowledge is fundamental to improve conservation strategies of historical documents. Furthermore, the identification of compounds used in ancient production techniques, also suggests for artifacts dating, authentication and provenance

    A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water

    Get PDF
    The density maximum of water dominates the thermodynamics of the system under ambient conditions, is strongly P-dependent, and disappears at a crossover pressure P[subscript cross] ~ 1.8 kbar. We study this variable across a wide area of the T–P phase diagram. We consider old and new data of both the isothermal compressibility K[subscript T](T, P) and the coefficient of thermal expansion αP(T, P). We observe that KT(T) shows a minimum at T* ~ 315±5 K for all the studied pressures. We find the behavior of αP to also be surprising: all the αP(T) curves measured at different P cross at T*. The experimental data show a “singular and universal expansivity point” at T* ~ 315 K and αP(T*) ≃ 0.44 10[superscript −3] K[superscript −1]. Unlike other water singularities, we find this temperature to be thermodynamically consistent in the relationship connecting the two response functions.Fulvio Frisone FondazioneNational Science Foundation (U.S.) (NSF Chemistry Division (grant CHE 0911389))National Science Foundation (U.S.) (NSF Chemistry Division CHE 1213217))Italy. Ministero dell'istruzione, dell'università e della ricerca (MIUR-PRIN2008

    Energy landscape in protein folding and unfolding

    Get PDF
    We use (1)H NMR to probe the energy landscape in the protein folding and unfolding process. Using the scheme [Formula: see text] reversible unfolded (intermediate) [Formula: see text] irreversible unfolded (denatured) state, we study the thermal denaturation of hydrated lysozyme that occurs when the temperature is increased. Using thermal cycles in the range [Formula: see text] K and following different trajectories along the protein energy surface, we observe that the hydrophilic (the amide NH) and hydrophobic (methyl CH(3) and methine CH) peptide groups evolve and exhibit different behaviors. We also discuss the role of water and hydrogen bonding in the protein configurational stability

    On the ergodicity of supercooled molecular glass-forming liquids at the dynamical arrest: the o-terphenyl case

    Get PDF
    The dynamics of supercooled ortho-terphenyl has been studied using photon-correlation spectroscopy (PCS) in the depolarized scattering geometry. The obtained relaxation curves are analyzed according to the mode-coupling theory (MCT) for supercooled liquids. The main results are: i) the observation of the secondary Johari-Goldstein relaxation (ÎČ) that has its onset just at the dynamical crossover temperature T[subscript B] (T[subscript M] > T[subscript B] > T[subscript g]); ii) the confirmation, of the suggestion of a recent statistical mechanical study, that such a molecular system remains ergodic also below the calorimetric glass-transition temperature T[subscript g]. Our experimental data give evidence that the time scales of the primary (α) and this secondary relaxations are correlated. Finally a comparison with recent PCS experiments in a colloidal system confirms the primary role of the dynamical crossover in the physics of the dynamical arrest.United States. Dept. of Energy. Office of Basic Energy Sciences (Contract DE-FG02-90ER45429

    The dynamic crossover in water does not require bulk water

    Get PDF
    Many of the anomalous properties of water may be explained by invoking a second critical point that terminates the coexistence line between the low- and high-density amorphous states in the liquid. Direct experimental evidence of this point, and the associated polyamorphic liquid–liquid transition, is elusive as it is necessary for liquid water to be cooled below its homogeneous-nucleation temperature. To avoid crystallization, water in the eutectic LiCl solution has been studied but then it is generally considered that “bulk” water cannot be present. However, recent computational and experimental studies observe cooperative hydration in which case it is possible that sufficient hydrogen-bonded water is present for the essential characteristics of water to be preserved. For femtosecond optical Kerr-effect and nuclear magnetic resonance measurements, we observe in each case a fractional Stokes–Einstein relation with evidence of the dynamic crossover appearing near 220 K and 250 K respectively. Spectra obtained in the glass state also confirm the complex nature of the hydrogen-bonding modes reported for neat room-temperature water and support predictions of anomalous diffusion due to “worm-hole” structure

    Phase equilibria and glass transition in colloidal systems with short-ranged attractive interactions. Application to protein crystallization

    Full text link
    We have studied a model of a complex fluid consisting of particles interacting through a hard core and a short range attractive potential of both Yukawa and square-well form. Using a hybrid method, including a self-consistent and quite accurate approximation for the liquid integral equation in the case of the Yukawa fluid, perturbation theory to evaluate the crystal free energies, and mode-coupling theory of the glass transition, we determine both the equilibrium phase diagram of the system and the lines of equilibrium between the supercooled fluid and the glass phases. For these potentials, we study the phase diagrams for different values of the potential range, the ratio of the range of the interaction to the diameter of the repulsive core being the main control parameter. Our arguments are relevant to a variety of systems, from dense colloidal systems with depletion forces, through particle gels, nano-particle aggregation, and globular protein crystallization.Comment: 20 pages, 10 figure

    Performance Assessment in Fingerprinting and Multi Component Quantitative NMR Analyses

    Get PDF
    An interlaboratory comparison (ILC) was organized with the aim to set up quality control indicators suitable for multicomponent quantitative analysis by nuclear magnetic resonance (NMR) spectroscopy. A total of 36 NMR data sets (corresponding to 1260 NMR spectra) were produced by 30 participants using 34 NMR spectrometers. The calibration line method was chosen for the quantification of a five-component model mixture. Results show that quantitative NMR is a robust quantification tool and that 26 out of 36 data sets resulted in statistically equivalent calibration lines for all considered NMR signals. The performance of each laboratory was assessed by means of a new performance index (named Qp-score) which is related to the difference between the experimental and the consensus values of the slope of the calibration lines. Laboratories endowed with a Qp-score falling within the suitable acceptability range are qualified to produce NMR spectra that can be considered statistically equivalent in terms of relative intensities of the signals. In addition, the specific response of nuclei to the experimental excitation/relaxation conditions was addressed by means of the parameter named NR. NR is related to the difference between the theoretical and the consensus slopes of the calibration lines and is specific for each signal produced by a well-defined set of acquisition parameters
    • 

    corecore