27 research outputs found

    Loss of Proteostasis Is a Pathomechanism in Cockayne Syndrome

    Get PDF
    Retarded growth and neurodegeneration are hallmarks of the premature aging disease Cockayne syndrome (CS). Cockayne syndrome proteins take part in the key step of ribosomal biogenesis, transcription of RNA polymerase I. Here, we identify a mechanism originating from a disturbed RNA polymerase I transcription that impacts translational fidelity of the ribosomes and consequently produces misfolded proteins. In cells from CS patients, the misfolded proteins are oxidized by the elevated reactive oxygen species (ROS) and provoke an unfolded protein response that represses RNA polymerase I transcription. This pathomechanism can be disrupted by the addition of pharmacological chaperones, suggesting a treatment strategy for CS. Additionally, this loss of proteostasis was not observed in mouse models of CS. Cockayne syndrome is a devastating childhood progeria. Here, Alupei et al. show that cells from CS patients have reduced translation accuracy and elevated ROS, leading to generation of unstable proteins and activation of ER stress. Reducing ER stress by chemical chaperones in these cells rescues RNA polymerase I activity and protein synthesis

    Translational adaptation to heat stress is mediated by RNA 5-methylcytosine in Caenorhabditis elegans.

    Get PDF
    Methylation of carbon-5 of cytosines (m5 C) is a post-transcriptional nucleotide modification of RNA found in all kingdoms of life. While individual m5 C-methyltransferases have been studied, the impact of the global cytosine-5 methylome on development, homeostasis and stress remains unknown. Here, using Caenorhabditis elegans, we generated the first organism devoid of m5 C in RNA, demonstrating that this modification is non-essential. Using this genetic tool, we determine the localisation and enzymatic specificity of m5 C sites in the RNome in vivo. We find that NSUN-4 acts as a dual rRNA and tRNA methyltransferase in C. elegans mitochondria. In agreement with leucine and proline being the most frequently methylated tRNA isoacceptors, loss of m5 C impacts the decoding of some triplets of these two amino acids, leading to reduced translation efficiency. Upon heat stress, m5 C loss leads to ribosome stalling at UUG triplets, the only codon translated by an m5 C34-modified tRNA. This leads to reduced translation efficiency of UUG-rich transcripts and impaired fertility, suggesting a role of m5 C tRNA wobble methylation in the adaptation to higher temperatures

    La tenuta della partecipazione elettorale e la (ri)mobilitazione del Sud

    No full text
    Il capitolo si focalizza sullo studio della partecipazione elettorale in occasione del voto del 4 marzo 2018. Ricostruisce il quadro sociopolitico degli ultimi 10-15 anni in relazione alla fase di recessione prolungata e di instabilit\ue0 politica. Si sofferma sulle differenze territoriali della partecipazione al voto nel 2018. Guarda alla relazione tra astensione e diffusione del voto di protesta, fornendo alcune possibili lettura di tale relazion

    Division of labour: tRNA methylation by the NSun2 tRNA methyltransferases Trm4a and Trm4b in fission yeast

    Get PDF
    Enzymes of the cytosine-5 RNA methyltransferase Trm4/NSun2 family methylate tRNAs at C48 and C49 in multiple tRNAs, as well as C34 and C40 in selected tRNAs. In contrast to most other organisms, fission yeast Schizosaccharomyces pombe carries two Trm4/NSun2 homologs, Trm4a (SPAC17D4.04) and Trm4b (SPAC23C4.17). Here, we have employed tRNA methylome analysis to determine the dependence of cytosine-5 methylation (m5C) tRNA methylation in vivo on the two enzymes. Remarkably, Trm4a is responsible for all C48 methylation, which lies in the tRNA variable loop, as well as for C34 in tRNALeuCAA and tRNAProCGG, which are at the anticodon wobble position. Conversely, Trm4b methylates C49 and C50, which both lie in the TΨC-stem. Thus, S. pombe show an unusual separation of activities of the NSun2/Trm4 enzymes that are united in a single enzyme in other eukaryotes like humans, mice and Saccharomyces cerevisiae. Furthermore, in vitro activity assays showed that Trm4a displays intron-dependent methylation of C34, whereas Trm4b activity is independent of the intron. The absence of Trm4a, but not Trm4b, causes a mild resistance of S. pombe to calcium chloride.Peer Reviewe

    Sperm RNA code programmes the metabolic health of offspring

    No full text
    International audienceMammalian sperm RNA is increasingly recognized as an additional source of paternal hereditary information beyond DNA. Environmental inputs, including an unhealthy diet, mental stresses and toxin exposure, can reshape the sperm RNA signature and induce offspring phenotypes that relate to paternal environmental stressors. Our understanding of the categories of sperm RNAs (such as tRNA-derived small RNAs, microRNAs, ribosomal RNA-derived small RNAs and long non-coding RNAs) and associated RNA modifications is expanding and has begun to reveal the functional diversity and information capacity of these molecules. However, the coding mechanism endowed by sperm RNA structures and by RNA interactions with DNA and other epigenetic factors remains unknown. How sperm RNA-encoded information is decoded in early embryos to control offspring phenotypes also remains unclear. Complete deciphering of the 'sperm RNA code' with regard to metabolic control could move the field towards translational applications and precision medicine, and this may lead to prevention of intergenerational transmission of obesity and type 2 diabetes mellitus susceptibility

    RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage

    No full text
    Dnmt2 proteins are the most conserved members of the DNA methyltransferase enzyme family, but their substrate specificity and biological functions have been a subject of controversy. We show here that, in addition to tRNAAsp-GTC, tRNAVal-AAC and tRNAGly-GCC are also methylated by Dnmt2. Drosophila Dnmt2 mutants showed reduced viability under stress conditions, and Dnmt2 relocalized to stress granules following heat shock. Strikingly, stress-induced cleavage of tRNAs was Dnmt2-dependent, and Dnmt2-mediated methylation protected tRNAs against ribonuclease cleavage. These results uncover a novel biological function of Dnmt2-mediated tRNA methylation, and suggest a role for Dnmt2 enzymes during the biogenesis of tRNA-derived small RNAs

    RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2.

    Get PDF
    RNA-mediated transmission of phenotypes is an important way to explain non-Mendelian heredity. We have previously shown that small non-coding RNAs can induce hereditary epigenetic variations in mice and act as the transgenerational signalling molecules. Two prominent examples for these paramutations include the epigenetic modulation of the Kit gene, resulting in altered fur coloration, and the modulation of the Sox9 gene, resulting in an overgrowth phenotype. We now report that expression of the Dnmt2 RNA methyltransferase is required for the establishment and hereditary maintenance of both paramutations. Our data show that the Kit paramutant phenotype was not transmitted to the progeny of Dnmt2(-/-) mice and that the Sox9 paramutation was also not established in Dnmt2(-/-) embryos. Similarly, RNA from Dnmt2-negative Kit heterozygotes did not induce the paramutant phenotype when microinjected into Dnmt2-deficient fertilized eggs and microinjection of the miR-124 microRNA failed to induce the characteristic giant phenotype. In agreement with an RNA-mediated mechanism of inheritance, no change was observed in the DNA methylation profiles of the Kit locus between the wild-type and paramutant mice. RNA bisulfite sequencing confirmed Dnmt2-dependent tRNA methylation in mouse sperm and also indicated Dnmt2-dependent cytosine methylation in Kit RNA in paramutant embryos. Together, these findings uncover a novel function of Dnmt2 in RNA-mediated epigenetic heredity

    Queuine links translational control in eukaryotes to a micronutrient from bacteria

    Get PDF
    Contains fulltext : 204045.pdf (publisher's version ) (Open Access

    DNA methylation analysis.

    No full text
    <p>A. Structure of the <i>Kit</i> transcription unit on mouse chromosome 5. Regions analyzed by (h)meDIP are indicated as black boxes, the promoter-associated CpG island is shown as a green box and the transgene insertion site of the <i>Kit<sup>tmlAlf1/+</sup></i> allele is marked by an asterisk. B. (h)meDIP analysis of genomic DNA from mouse testes. Immunoprecipitated DNA was amplified by locus-specific qPCR and enrichments were calculated relative to the unmethylated actin control. 5mC values are shown as red bars and 5hmC values as blue bars. Diagrams show the results of at least three independent experiments, standard errors of the mean are indicated by error bars. C. Bisulfite sequencing analysis of genomic DNA from testes. Methylation maps show 454 sequencing reads (rows) and the methylation status of 9 CpGs (columns) within the Kit promoter and 4 CpGs from the Kit exon 14 region. Methylated CpGs are shown in red, unmethylated CpGs in cyan and gaps in white. Numbers in methylation maps indicate the number of sequencing reads.</p
    corecore