47 research outputs found

    The HIV drug optimization agenda: promoting standards for earlier investigation and approvals of antiretroviral drugs for use in adolescents living with HIV.

    Get PDF
    INTRODUCTION: Most clinical trials for new antiretroviral (ARV) agents are conducted among narrowly defined adult populations. Only after safety and efficacy have been clearly demonstrated among adults living with HIV are trials including adolescents, children and infants conducted. This approach contributes to significant delays in the availability of optimal new ARV regimens for infants, children and adolescents. This commentary discusses issues related to the inclusion of adolescents aged 12 to 18 years in initial HIV clinical phase 3 trials of novel antiretrovirals (ARVs) or conducting parallel phase 3 clinical trials among adolescents. DISCUSSION: The absorption, metabolic and excretion or elimination pathways for drugs do not significantly differ between adolescents and adults. In fact, dosing recommendations for ARVs are the same for adults and adolescents who meet the age and weight criteria. Although conducting clinical trials among adolescents present special challenges (e.g. consenting minors and concerns about trial completion and contraception), these challenges can be addressed to obtain high-quality trial results. Importantly, new agents and optimized combinations have more favourable dosing schedules and side-effect profiles and are more effective ARV agents with higher HIV drug resistance thresholds, which would be extremely beneficial to improve outcomes among HIV-positive adolescents. CONCLUSIONS: Adolescents may not present with significantly different pharmacokinetic characteristics from those in adults. Including HIV-positive adolescents in phase 3 ARV clinical trials, either with adults or in specific adolescent studies conducted in parallel, would allow adolescents to access promising, more effective treatment for HIV years earlier than with the current stepwise approach

    A trip down memory lane with Retrovirology

    Get PDF
    Fifteen years ago, Retrovirology was amongst the first open-access journals to be established through Biomed Central, instigated by our late Founding Editor Dr. Kuan-Teh Jeang. Since then, in what seemed like a rather daring move to be paper-free, Retrovirology has witnessed the exponential growth of open access journals that have changed the landscape of scientific publishing and communications. As was pointed out by the staff editors in PLoS Biology [1], the infancy of open access journal was a very different time from our present day, which was before smartphones, prior to most of the digital social media platforms and at a time when we had only begun to learn about the completed DNA sequences from the Human Genome Projec

    Impact of next-generation sequencing defined human immunodeficiency virus pretreatment drug resistance on virological outcomes in the ANRS 12249 treatment-as-prevention trial

    Get PDF
    Background Previous studies in human immunodeficiency virus (HIV)-positive individuals on thymidine analogue backbone antiretroviral therapy (ART) with either nevirapine or efavirenz have suggested poorer virological outcomes in the presence of pretreatment drug resistance (PDR). We assessed the impact of PDR on virological suppression (VS; <50 copies/mL) in individuals prescribed primarily tenofovir/emtricitabine/efavirenz in rural KwaZulu-Natal within a treatment-as-prevention trial. Methods Among 1557 HIV-positive individuals who reported no prior ART at study entry and provided plasma samples, 1328 individuals with entry viral load (VL) >1000 copies/mL had next-generation sequencing (NGS) of the HIV pol gene with MiSeq technology. Results were obtained for 1148 individuals, and the presence of PDR was assessed at 5% and 20% detection thresholds. Virological outcome was assessed using Cox regression in 837 of 920 ART initiators with at least 1 follow-up VL after ART initiation. Results PDR prevalence was 9.5% (109/1148) and 12.8% (147/1148) at 20% and 5% thresholds, respectively. After a median of 1.36 years (interquartile range, 0.91–2.13), mostly on fixed-dose combination tenofovir/emtricitabine/efavirenz, presence of both nonnucleoside reverse transcriptase inhibitor (NNRTI)/nucleoside reverse transcriptase inhibitor PDR vs no PDR was associated with longer time to VS (adjusted hazard ratio [aHR], 0.32; 95% confidence interval [CI], 0.12–0.86), while there was no difference between those with only NNRTI PDR vs no PDR (aHR, 1.05; 95% CI, 0.82–1.34) at the 5% threshold. Similar differences were observed for mutations detected at the 20% threshold, although without statistical significance. Conclusions NGS uncovered a high prevalence of PDR among participants enrolled in trial clinics in rural KwaZulu-Natal. Dual-class PDR to a mainly tenofovir/emtricitabine/efavirenz regimen was associated with poorer VS. However, there was no impact of NNRTI PDR alone

    Nucleoprotein Nanostructures Combined with Adjuvants Adapted to the Neonatal Immune Context: A Candidate Mucosal RSV Vaccine

    Get PDF
    BACKGROUND: The human respiratory syncytial virus (hRSV) is the leading cause of severe bronchiolitis in infants worldwide. The most severe RSV diseases occur between 2 and 6 months-of-age, so pediatric vaccination will have to be started within the first weeks after birth, when the immune system is prone to Th2 responses that may turn deleterious upon exposure to the virus. So far, the high risk to prime for immunopathological responses in infants has hampered the development of vaccine. In the present study we investigated the safety and efficacy of ring-nanostructures formed by the recombinant nucleoprotein N of hRSV (N(SRS)) as a mucosal vaccine candidate against RSV in BALB/c neonates, which are highly sensitive to immunopathological Th2 imprinting. METHODOLOGY AND PRINCIPAL FINDINGS: A single intranasal administration of N(SRS) with detoxified E. coli enterotoxin LT(R192G) to 5-7 day old neonates provided a significant reduction of the viral load after an RSV challenge at five weeks of age. However, neonatal vaccination also generated an enhanced lung infiltration by neutrophils and eosinophils following the RSV challenge. Analysis of antibody subclasses and cytokines produced after an RSV challenge or a boost administration of the vaccine suggested that neonatal vaccination induced a Th2 biased local immune memory. This Th2 bias and the eosinophilic reaction could be prevented by adding CpG to the vaccine formulation, which, however did not prevent pulmonary inflammation and neutrophil infiltration upon viral challenge. CONCLUSIONS/SIGNIFICANCE: In conclusion, protective vaccination against RSV can be achieved in neonates but requires an appropriate combination of adjuvants to prevent harmful Th2 imprinting

    Sub-Nucleocapsid Nanoparticles: A Nasal Vaccine against Respiratory Syncytial Virus

    Get PDF
    Background: Bronchiolitis caused by the respiratory syncytial virus (RSV) in infants less than two years old is a growing public health concern worldwide, and there is currently no safe and effective vaccine. A major component of RSV nucleocapsid, the nucleoprotein (N), has been so far poorly explored as a potential vaccine antigen, even though it is a target of protective anti-viral T cell responses and is remarkably conserved between human RSV A and B serotypes. We recently reported a method to produce recombinant N assembling in homogenous rings composed of 10–11 N subunits enclosing a bacterial RNA. These nanoparticles were named sub-nucleocapsid ring structure (N SRS). Methodology and Principal Findings: The vaccine potential of N SRS was evaluated in a well-characterized and widely acknowledged mouse model of RSV infection. BALB/c adult mice were immunized intranasally with N SRS adjuvanted with the detoxified E. coli enterotoxin LT(R192G). Upon RSV challenge, vaccinated mice were largely protected against virus replication in the lungs, with a mild inflammatory lymphocytic and neutrophilic reaction in their airways. Mucosal immunization with N SRS elicited strong local and systemic immunity characterized by high titers of IgG1, IgG2a and IgA anti-N antibodies, antigen-specific CD8+ T cells and IFN-c-producing CD4+ T cells. Conclusions/Significance: This is the first report of using nanoparticles formed by the recombinant nucleocapsid protein as an efficient and safe intra-nasal vaccine against RSV

    Protein-Binding Microarray Analysis of Tumor Suppressor AP2α Target Gene Specificity

    Get PDF
    Cheap and massively parallel methods to assess the DNA-binding specificity of transcription factors are actively sought, given their prominent regulatory role in cellular processes and diseases. Here we evaluated the use of protein-binding microarrays (PBM) to probe the association of the tumor suppressor AP2α with 6000 human genomic DNA regulatory sequences. We show that the PBM provides accurate relative binding affinities when compared to quantitative surface plasmon resonance assays. A PBM-based study of human healthy and breast tumor tissue extracts allowed the identification of previously unknown AP2α target genes and it revealed genes whose direct or indirect interactions with AP2α are affected in the diseased tissues. AP2α binding and regulation was confirmed experimentally in human carcinoma cells for novel target genes involved in tumor progression and resistance to chemotherapeutics, providing a molecular interpretation of AP2α role in cancer chemoresistance. Overall, we conclude that this approach provides quantitative and accurate assays of the specificity and activity of tumor suppressor and oncogenic proteins in clinical samples, interfacing genomic and proteomic assays

    Modelling Human Regulatory Variation in Mouse: Finding the Function in Genome-Wide Association Studies and Whole-Genome Sequencing

    Get PDF
    An increasing body of literature from genome-wide association studies and human whole-genome sequencing highlights the identification of large numbers of candidate regulatory variants of potential therapeutic interest in numerous diseases. Our relatively poor understanding of the functions of non-coding genomic sequence, and the slow and laborious process of experimental validation of the functional significance of human regulatory variants, limits our ability to fully benefit from this information in our efforts to comprehend human disease. Humanized mouse models (HuMMs), in which human genes are introduced into the mouse, suggest an approach to this problem. In the past, HuMMs have been used successfully to study human disease variants; e.g., the complex genetic condition arising from Down syndrome, common monogenic disorders such as Huntington disease and β-thalassemia, and cancer susceptibility genes such as BRCA1. In this commentary, we highlight a novel method for high-throughput single-copy site-specific generation of HuMMs entitled High-throughput Human Genes on the X Chromosome (HuGX). This method can be applied to most human genes for which a bacterial artificial chromosome (BAC) construct can be derived and a mouse-null allele exists. This strategy comprises (1) the use of recombineering technology to create a human variant–harbouring BAC, (2) knock-in of this BAC into the mouse genome using Hprt docking technology, and (3) allele comparison by interspecies complementation. We demonstrate the throughput of the HuGX method by generating a series of seven different alleles for the human NR2E1 gene at Hprt. In future challenges, we consider the current limitations of experimental approaches and call for a concerted effort by the genetics community, for both human and mouse, to solve the challenge of the functional analysis of human regulatory variation

    Microarray-Based Sketches of the HERV Transcriptome Landscape

    Get PDF
    Human endogenous retroviruses (HERVs) are spread throughout the genome and their long terminal repeats (LTRs) constitute a wide collection of putative regulatory sequences. Phylogenetic similarities and the profusion of integration sites, two inherent characteristics of transposable elements, make it difficult to study individual locus expression in a large-scale approach, and historically apart from some placental and testis-regulated elements, it was generally accepted that HERVs are silent due to epigenetic control. Herein, we have introduced a generic method aiming to optimally characterize individual loci associated with 25-mer probes by minimizing cross-hybridization risks. We therefore set up a microarray dedicated to a collection of 5,573 HERVs that can reasonably be assigned to a unique genomic position. We obtained a first view of the HERV transcriptome by using a composite panel of 40 normal and 39 tumor samples. The experiment showed that almost one third of the HERV repertoire is indeed transcribed. The HERV transcriptome follows tropism rules, is sensitive to the state of differentiation and, unexpectedly, seems not to correlate with the age of the HERV families. The probeset definition within the U3 and U5 regions was used to assign a function to some LTRs (i.e. promoter or polyA) and revealed that (i) autonomous active LTRs are broadly subjected to operational determinism (ii) the cellular gene density is substantially higher in the surrounding environment of active LTRs compared to silent LTRs and (iii) the configuration of neighboring cellular genes differs between active and silent LTRs, showing an approximately 8 kb zone upstream of promoter LTRs characterized by a drastic reduction in sense cellular genes. These gathered observations are discussed in terms of virus/host adaptive strategies, and together with the methods and tools developed for this purpose, this work paves the way for further HERV transcriptome projects

    Patient-derived xenograft (PDX) models in basic and translational breast cancer research

    Get PDF
    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well
    corecore