22 research outputs found

    Team dynamics in emergency surgery teams: results from a first international survey

    Get PDF
    Background: Emergency surgery represents a unique context. Trauma teams are often multidisciplinary and need to operate under extreme stress and time constraints, sometimes with no awareness of the trauma\u2019s causes or the patient\u2019s personal and clinical information. In this perspective, the dynamics of how trauma teams function is fundamental to ensuring the best performance and outcomes. Methods: An online survey was conducted among the World Society of Emergency Surgery members in early 2021. 402 fully filled questionnaires on the topics of knowledge translation dynamics and tools, non-technical skills, and difficulties in teamwork were collected. Data were analyzed using the software R, and reported following the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). Results: Findings highlight how several surgeons are still unsure about the meaning and potential of knowledge translation and its mechanisms. Tools like training, clinical guidelines, and non-technical skills are recognized and used in clinical practice. Others, like patients\u2019 and stakeholders\u2019 engagement, are hardly implemented, despite their increasing importance in the modern healthcare scenario. Several difficulties in working as a team are described, including the lack of time, communication, training, trust, and ego. Discussion: Scientific societies should take the lead in offering training and support about the abovementioned topics. Dedicated educational initiatives, practical cases and experiences, workshops and symposia may allow mitigating the difficulties highlighted by the survey\u2019s participants, boosting the performance of emergency teams. Additional investigation of the survey results and its characteristics may lead to more further specific suggestions and potential solutions

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →μ⁺μ⁻K⁺K⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF

    Observation of electroweak production of Wγ with two jets in proton-proton collisions at √s = 13 TeV

    Get PDF
    A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb1^{-1}. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak Wγjj_{γjj} production in a restricted fiducial region is measured as 20.4 +/- 4.5 fb and the total cross section for Wγ_{γ} production in association with 2 jets in the same fiducial region is 108 +/- 16 fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators

    Measurements of production cross sections of polarized same-sign W boson pairs in association with two jets in proton-proton collisions at s=13 TeV

    Get PDF
    The first measurements of production cross sections of polarized same-sign W±W±boson pairs in proton-proton collisions are reported. The measurements are based on a data sample collected with the CMS detector at the LHC at a center-of-mass energy of 13TeV, corresponding to an integrated luminosity of 137fb−1. Events are selected by requiring exactly two same-sign leptons, electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass to enhance the contribution of same-sign W±W±scattering events. An observed (expected) 95% confidence level upper limit of 1.17 (0.88)fbis set on the production cross section for longitudinally polarized same-sign W±W±boson pairs. The electroweak production of same-sign W±W±boson pairs with at least one of the Wbosons longitudinally polarized is measured with an observed (expected) significance of 2.3 (3.1) standard deviations.SCOAP

    Possible role for rare TRPM7 variants in patients with hypomagnesaemia with secondary hypocalcaemia.

    No full text
    BACKGROUND: Hypomagnesaemia with secondary hypocal-caemia (HSH) is a rare autosomal recessive disorder caused by pathogenic variants in TRPM6, encoding the channel-kinase transient receptor potential melastatin type 6. Patients have very low serum magnesium (Mg2+) levels and suffer from muscle cramps and seizures. Despite genetic testing, a subgroup of HSH patients remains without a diagnosis. METHODS: In this study, two families with an HSH phenotype but negative for TRPM6 pathogenic variants were subjected to whole exome sequencing. Using a complementary combination of biochemical and functional analyses in overexpression systems and patient-derived fibroblasts, the effect of the TRPM7-identified variants on Mg2+ transport was examined. RESULTS: For the first time, variants in TRPM7 were identified in two families as a potential cause for hereditary HSH. Patients suffer from seizures and muscle cramps due to magnesium deficiency and episodes of hypocalcaemia. In the first family, a splice site variant caused the incorporation of intron 1 sequences into the TRPM7 messenger RNA and generated a premature stop codon. As a consequence, patient-derived fibroblasts exhibit decreased cell growth. In the second family, a heterozygous missense variant in the pore domain resulted in decreased TRPM7 channel activity. CONCLUSIONS: We establish TRPM7 as a prime candidate gene for autosomal dominant hypomagnesaemia and secondary hypocalcaemia. Screening of unresolved patients with hypocalcaemia and secondary hypocalcaemia may further establish TRPM7 pathogenic variants as a novel Mendelian disorder

    Exploring properties of high-density matter through remnants of neutron-star mergers

    No full text

    Search for new Higgs bosons via same-sign top quark pair production in association with a jet in proton-proton collisions at s=13TeV

    No full text
    A search is presented for new Higgs bosons in proton-proton (pp) collision events in which a same-sign top quark pair is produced in association with a jet, via the pp→tH/A→ttc‾ and pp→tH/A→ttu‾ processes. Here, H and A represent the extra scalar and pseudoscalar boson, respectively, of the second Higgs doublet in the generalized two-Higgs-doublet model (g2HDM). The search is based on pp collision data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 138fb−1. Final states with a same-sign lepton pair in association with jets and missing transverse momentum are considered. New Higgs bosons in the 200–1000 GeV mass range and new Yukawa couplings between 0.1 and 1.0 are targeted in the search, for scenarios in which either H or A appear alone, or in which they coexist and interfere. No significant excess above the standard model prediction is observed. Exclusion limits are derived in the context of the g2HDM

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s=13TeV

    No full text
    A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138fb−1. The search is sensitive to resonances with masses between 1.3 and 6TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z′ and W′ resonances with masses below 4.8TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1fb

    Study of azimuthal anisotropy of ϒ(1S) mesons in pPb collisions at sNN = 8.16 TeV

    No full text
    The azimuthal anisotropy of Image 1 mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16TeV. The Image 1 mesons are reconstructed using their dimuon decay channel. The anisotropy is characterized by the second Fourier harmonic coefficients, found using a two-particle correlation technique, in which the Image 1 mesons are correlated with charged hadrons. A large pseudorapidity gap is used to suppress short-range correlations. Nonflow contamination from the dijet background is removed using a low-multiplicity subtraction method, and the results are presented as a function of Image 1 transverse momentum. The azimuthal anisotropies are smaller than those found for charmonia in proton-lead collisions at the same collision energy, but are consistent with values found for Image 1 mesons in lead-lead interactions at a nucleon-nucleon center-of-mass energy of 5.02 TeV

    Measurement of the tt¯ charge asymmetry in events with highly Lorentz-boosted top quarks in pp collisions at s=13 TeV

    No full text
    The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at s=13TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb−1. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a tt¯ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42−0.69+0.64)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750–900 and >900GeV
    corecore