45 research outputs found

    Le rôle des cellules gliales de Müller dans la mort des cellules ganglionnaires de la rétine par des mécanismes cellulaires non-autonomes

    Full text link
    Les cellules gliales sont essentielles au fonctionnement du système nerveux. Dans la rétine, les cellules gliales de Müller assurent à la fois l’homéostasie du tissu et la protection des neurones, notamment celle des cellules ganglionnaires de la rétine (CGRs). L’hypothèse principale de la thèse est que les cellules de Müller joueraient un rôle primordial dans la survie neuronale tant au plan de la signalisation des neurotrophines/proneurotrophines par suite d’une blessure que lors des mécanismes d’excitotoxicité. Contrairement au brain-derived neurotrophic factor (BDNF), le nerve growth factor (NGF) n’est pas en mesure d’induire la survie des CGRs après une section du nerf optique. Le premier objectif de la thèse a donc été de localiser les récepteurs p75NTR et TrkA du NGF dans la rétine adulte et d’établir leur fonction respective en utilisant des ligands peptidomimétiques agonistes ou antagonistes spécifiques pour chacun des récepteurs. Nos résultats ont démontré que TrkA est surexprimé par les CGRs après l’axotomie, tandis que p75NTR est spécifiquement exprimé par les cellules de Müller. Alors que NGF n’est pas en mesure d’induire la survie des CGRs, l’activation spécifique de TrkA par des ligands peptidomimétique est nettement neuroprotectrice. De façon surprenante, le blocage sélectif de p75NTR ou l’absence de celui-ci protège les CGRs de la mort induite par l’axotomie. De plus, la combinaison de NGF avec l’antagoniste de p75NTR agit de façon synergique sur la survie des CGRS. Ces résultats révèlent un nouveau mécanisme par lequel le récepteur p75NTR exprimé par les cellules gliales de Müller peut grandement influencer la survie neuronale. Ensuite, nous avons voulu déterminer l’effet des proneurotrophines dans la rétine adulte. Nous avons démontré que l’injection de proNGF induit la mort des CGRs chez le rat et la souris par un mécanisme dépendant de p75NTR. L’expression de p75NTR étant exclusive aux cellules de Müller, nous avons testé l’hypothèse que le proNGF active une signalisation cellulaire non-autonome qui aboutit à la mort des CGRs. En suivant cette idée, nous avons montré que le proNGF induit une forte expression du tumor necrosis factor α (TNFα) dans les cellules de Müller et que l’inhibition du TNF bloque la mort neuronale induite par le proNGF. L’utilisation de souris knock-out pour la protéine p75NTR, son co-récepteur sortiline, ou la protéine adaptatrice NRAGE a permis de montrer que la production de TNF par les cellules gliales était dépendante de ces protéines. Le proNGF semble activer une signalisation cellulaire non-autonome qui cause la mort des neurones de façon dépendante du TNF in vivo. L’hypothèse centrale de l’excitotoxicité est que la stimulation excessive des récepteurs du glutamate sensibles au N-Methyl-D-Aspartate (NMDA) est dommageable pour les neurones et contribue à plusieurs maladies neurodégénératives. Les cellules gliales sont soupçonnées de contribuer à la mort neuronale par excitotoxicité, mais leur rôle précis est encore méconnu. Le dernier objectif de ma thèse était d’établir le rôle des cellules de Müller dans cette mort neuronale. Nos résultats ont démontré que l’injection de NMDA induit une activation du nuclear factor κB (NF-κB) dans les cellules de Müller, mais pas dans les CGRs, et que l’utilisation d’inhibiteurs du NF-κB empêche la mort des CGRs. De plus, nous avons montré que les cellules de Müller en réaction à l’activation du NF-κB produisent la protéine TNFα laquelle semble être directement impliquée dans la mort des CGRs par excitotoxicité. Cette mort cellulaire se produit principalement par l’augmentation à la surface des neurones des récepteurs AMPA perméables au Ca2+, un phénomène dépendant du TNFα. Ces donnés révèlent un nouveau mécanisme cellululaire non-autonome par lequel les cellules gliales peuvent exacerber la mort neuronale lors de la mise en jeu de mécanismes excitotoxiques.Glial cells are essential for the functioning of the nervous system. In the retina, the Müller glial cells ensure the homeostasis of this tissue as well as the protection of neurons including the retinal ganglion cells (RGCs). The main hypothesis of this thesis is that Müller cells play a predominant role in neuronal survival both at the levels of neurotrophin/proneurotrophin signaling following injury and excitotoxic mechanisms. Unlike the brain-derived neurotrophic factor (BDNF), the nerve growth factor (NGF) is unable to induce RGCs survival following optic nerve transection. The first objective of the thesis was therefore to describe the expression of the two receptors of NGF, p75NTR and TrkA, in the adult retina and to address their functional role by using peptidomimetic agonistic or antagonistic ligands specific for each receptor. Our results showed that TrkA is overexpressed by RGCs following axotomy, whereas p75NTR is specifically expressed by Müller cells. While NGF by itself does not promote RGC survival, selective activation of TrkA receptors using peptidomimetic ligands is markedly neuroprotective. Surprisingly, selective blockers of p75NTR, or the absence of p75NTR, protect RGCs from axotomy-induced death. Moreover, combination of NGF or TrkA agonists with p75NTR antagonists functions synergistically to enhance RGC survival. These results reveal a new mechanism by which p75NTR expression by Müller glia may profoundly influence neuronal survival. Next, we wanted to address the effect of proneurotrophins in the adult retina. We showed that injection of proNGF induces the death of RGCs in rats and mice by a p75NTR-dependent signaling mechanism. Expression of p75NTR in the adult retina being confined to Müller glial cells, we tested the hypothesis that proNGF activates a non-cell autonomous signaling pathway to induce RGC death. Consistent with this notion, we showed that proNGF induced a robust expression of tumor necrosis factor α (TNFα) in Müller cells, and that genetic or biochemical ablation of TNFα blocked proNGF-induced death of retinal neurons. Mice rendered null for p75NTR, its co-receptor sortilin, or the adaptor protein NRAGE were defective in proNGF-induced glial TNFα production and did not undergo proNGF-induced retinal ganglion cell death. We concluded that proNGF activates a non-cell autonomous signaling pathway that causes TNFα-dependent death of retinal neurons in vivo. The central hypothesis of excitotoxicity is that excessive stimulation of neuronal N-Methyl-D-Aspartate (NMDA)-sensitive glutamate receptors is harmful to neurons and contributes to a variety of neurological disorders. Glial cells have been proposed to participate in excitotoxic neuronal loss, but their precise role is poorly defined. In this in vivo study, we showed that NMDA induces a strong NF-κB activation in Müller glia, but not in retinal neurons. Intriguingly, NMDA-induced death of retinal neurons was effectively blocked by inhibitors of NF-κB activity. We demonstrated that TNFα protein produced in Müller glial cells via an NMDA-induced NF-κB dependent pathway plays a crucial role in the excitotoxic loss of retinal neurons. This cell loss occurs mainly through a TNFα-dependent increase in Ca2+-permeable AMPA receptors on susceptible neurons. Thus, our data reveal a novel non-cell-autonomous mechanism by which glial cells can profoundly exacerbate neuronal death following excitotoxic injury

    How Histone Deacetylases Control Myelination

    Get PDF
    Myelinated axons are a beautiful example of symbiotic interactions between two cell types: Myelinating glial cells organize axonal membranes and build their myelin sheaths to allow fast action potential conduction, while axons regulate myelination and enhance the survival of myelinating cells. Axonal demyelination, occurring in neurodegenerative diseases or after a nerve injury, results in severe motor and/or mental disabilities. Thus, understanding how the myelination process is induced, regulated, and maintained is crucial to develop new therapeutic strategies for regeneration in the nervous system. Epigenetic regulation has recently been recognized as a fundamental contributing player. In this review, we focus on the central mechanisms of gene regulation mediated by histone deacetylation and other key functions of histone deacetylases in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous system

    The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease

    Get PDF
    Mutations in the mitochondrial fission factor GDAP1 are associated with severe peripheral neuropathies, but why the CNS remains unaffected is unclear. Using a Gdap1−/− mouse, Niemann et al. demonstrate that a CNS-expressed Gdap1 paralogue changes its subcellular localisation under oxidative stress conditions to also act as a mitochondrial fission facto

    A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen

    Get PDF
    Human activity impacts the evolutionary trajectories of many species worldwide. Global trade of agricultural goods contributes to the dispersal of pathogens reshaping their genetic makeup and providing opportunities for virulence gains. Understanding how pathogens surmount control strategies and cope with new climates is crucial to predicting the future impact of crop pathogens. Here, we address this by assembling a global thousand-genome panel of Zymoseptoria tritici, a major fungal pathogen of wheat reported in all production areas worldwide. We identify the global invasion routes and ongoing genetic exchange of the pathogen among wheat-growing regions. We find that the global expansion was accompanied by increased activity of transposable elements and weakened genomic defenses. Finally, we find significant standing variation for adaptation to new climates encountered during the global spread. Our work shows how large population genomic panels enable deep insights into the evolutionary trajectory of a major crop pathogen

    Combined HDAC1 and HDAC2 Depletion Promotes Retinal Ganglion Cell Survival After Injury Through Reduction of p53 Target Gene Expression

    No full text
    Histones deacetylases (HDACs), besides their function as epigenetic regulators, deacetylate and critically regulate the activity of nonhistone targets. In particular, HDACs control partially the proapoptotic activity of p53 by balancing its acetylation state. HDAC inhibitors have revealed neuroprotective properties in different models, but the exact mechanisms of action remain poorly understood. We have generated a conditional knockout mouse model targeting retinal ganglion cells (RGCs) to investigate specifically the functional role of HDAC1 and HDAC2 in an acute model of optic nerve injury. Our results demonstrate that combined HDAC1 and HDAC2 ablation promotes survival of axotomized RGCs. Based on global gene expression analyses, we identified the p53-PUMA apoptosis-inducing axis to be strongly activated in axotomized mouse RGCs. Specific HDAC1/2 ablation inhibited this apoptotic pathway by impairing the crucial acetylation status of p53 and reducing PUMA expression, thereby contributing to the ensuing enhanced neuroprotection due to HDAC1/2 depletion. HDAC1/2 inhibition and the affected downstream signaling components emerge as specific targets for developing therapeutic strategies in neuroprotection.ISSN:1759-091

    How histone deacetylases control myelination.

    No full text
    ISSN:0893-7648ISSN:1559-118

    Acute Kidney Injury Associated With Lopinavir/Ritonavir Combined Therapy in Patients With COVID-19

    No full text
    International audienceLopinavir and low-dose ritonavir (LPV/RTV) are associated in a fixed-dose combination protease inhibitor therapy used in patients with HIV and AIDS. The recent outbreak of severe acute respiratory syndrome coronavirus 2 infections causing coronavirus disease 2019 (COVID-19) has rekindled the interest in LPV/RTV after preclinical studies.1 Although no benefit was observed with LPV/RTV treatment beyond standard care,2 other randomized controlled trials, such as DisCoVeRy (NCT04315948), are currently enrolling. Like other antiretroviral therapies, LPV/RTV has been previously associated with acute kidney injuries (AKIs), even though no systematic pharmacovigilance analysis was ever performed.We first describe a small case series of AKI associated with LPV/RTV in the course of COVID-19 treatment. We then performed a query in the World Health Organization pharmacovigilance database, VigiBase, and extracted all AKIs associated with LPV/RTV. We then presented clinical characteristics of these events and performed a comparison between HIV and COVID-19 indication in VigiBase

    Sedimentology, palaeoenvironments and biostratigraphy of the Pliocene-Pleistocene carbonate platform of Grande-Terre (Guadeloupe, Lesser Antilles forearc)

    No full text
    International audiencePliocene and Pleistocene deposits from Grande-Terre (Guadeloupe archipelago, French Lesser Antilles) provide a remarkable example of an isolated carbonate system built in an active margin setting, with sedimentation both controlled by rapid sea-level changes and tectonic movements. Based on new field, sedimentological and palaeontological analyses, these deposits have been organized into four sedimentary sequences (S1 to S4) separated by three subaerial erosion surfaces (SB0, SB1 and SB2). Sequences S1 and S2 ('Calcaires inférieurs à rhodolithes') deposited during the late Zanclean to early Gelasian (planktonic foraminiferal Zones PL2 to PL5) in low subsidence conditions, on a distally steepened ramp dipping eastward. Red algal-rich deposits, which dominate the western part of Grande-Terre, change to planktonic foraminifer-rich deposits eastward. Vertical movements of tens of metres were responsible for the formation of SB0 and SB1. Sequence S3 ('Formation volcano-sédimentaire', 'Calcaires supérieurs à rhodolithes' and 'Calcaires à Agaricia') was deposited during the late Piacenzian to early Calabrian (Zones PL5 to PT1a) on a distally steepened, red algal-dominated ramp that changes upward into a homoclinal, coral-dominated ramp. Deposition of Sequence S3 occurred during a eustatic cycle in quiet tectonic conditions. Its uppermost boundary, the major erosion surface SB2, is related to the Cala1 eustatic sea-level fall. Finally, Sequence S4 ('Calcaires à Acropora') probably formed during the Calabrian, developing as a coral-dominated platform during a eustatic cycle in quiet tectonic conditions. The final emergence of the island could then have occurred in late Calabrian times

    The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease

    Get PDF
    The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot-Marie-Tooth disease. We found that Gdap1 knockout mice (Gdap1(-/-)), mimicking genetic alterations of patients suffering from severe forms of Charcot-Marie-Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in Gdap1(-/-) mice and mitochondrial transport is impaired in cultured sensory neurons of Gdap1(-/-) mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of Gdap1(-/-) mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged Gdap1(-/-) mice compared with controls. Our findings demonstrate that Charcot-Marie-Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione

    mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells

    Get PDF
    Myelin formation during peripheral nervous system (PNS) development, and reformation after injury and in disease, requires multiple intrinsic and extrinsic signals. Akt/mTOR signaling has emerged as a major player involved, but the molecular mechanisms and downstream effectors are virtually unknown. Here, we have used Schwann-cell-specific conditional gene ablation of raptor and rictor, which encode essential components of the mTOR complexes 1 (mTORC1) and 2 (mTORC2), respectively, to demonstrate that mTORC1 controls PNS myelination during development. In this process, mTORC1 regulates lipid biosynthesis via sterol regulatory element-binding proteins (SREBPs). This course of action is mediated by the nuclear receptor RXRγ, which transcriptionally regulates SREBP1c downstream of mTORC1. Absence of mTORC1 causes delayed myelination initiation as well as hypomyelination, together with abnormal lipid composition and decreased nerve conduction velocity. Thus, we have identified the mTORC1-RXRγ-SREBP axis controlling lipid biosynthesis as a major contributor to proper peripheral nerve function.ISSN:2666-3864ISSN:2211-124
    corecore