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The Gdap1 knockout mouse mechanistically links
redox control to Charcot–Marie–Tooth disease
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The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1

cause Charcot–Marie–Tooth disease. We found that Gdap1 knockout mice (Gdap1�/�), mimicking genetic alterations of pa-

tients suffering from severe forms of Charcot–Marie–Tooth disease, develop an age-related, hypomyelinating peripheral neur-

opathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria

of peripheral neurons are larger in Gdap1�/� mice and mitochondrial transport is impaired in cultured sensory neurons of

Gdap1�/� mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochon-

drial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system

but not in the central nervous system of Gdap1�/� mice compared with control littermates. In search for a molecular mechanism

we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1

responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the

mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more

GDAP1L1 was associated with mitochondria in the spinal cord of aged Gdap1�/� mice compared with controls. Our findings

demonstrate that Charcot–Marie–Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the

peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that

members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized

glutathione.
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Introduction
Charcot–Marie–Tooth disease, also called hereditary motor and

sensory neuropathies, is one of the most common inherited neuro-

logical diseases (Skre, 1974). The disease phenotype is usually

associated with distal muscle weakness and atrophy, distal sensory

loss and deformities of the limbs. Charcot–Marie–Tooth disease is

caused by mutations in many different genes, with autosomal re-

cessive, dominant or X-linked modes of inheritance (Suter and

Scherer, 2003). Depending on the gene and the specific mutation,

the disease manifests either by damaging neurons, Schwann cells,

as the myelinating glia of the PNS, or both cell types. In axonal

forms of Charcot–Marie–Tooth disease, loss of myelinated axons is

the primary pathological feature of the disease, detectable by

reduced compound muscle action potential amplitudes. In primary

demyelinating forms, myelin formation or maintenance is im-

paired, leading to decreased nerve conduction velocities, invariably

followed by axonal loss at later stages. In intermediate forms,

a mild nerve conduction velocity reduction and reduced

compound muscle action potential amplitudes are detectable sim-

ultaneously, indicative of a synchronous impairment of the myelin-

axonal entity (Shy et al., 2001; Suter and Scherer, 2003). Only a

few Charcot–Marie–Tooth disease forms are caused by mutations

in genes that are exclusively or mainly expressed in peripheral

nerves, raising the question of why mutations in Charcot–Marie–

Tooth disease-linked genes specifically damage peripheral nerves

(Berger et al., 2006; Niemann et al., 2006). Animal models for

some Charcot–Marie–Tooth disease forms have been established

and allowed the elucidation of the molecular disease mechanisms,

leading to the development of new therapeutic strategies (Martini,

2000; Meyer Zu Horste and Nave, 2006).

In peripheral nerves, one of the essential pathways is the main-

tenance of mitochondrial dynamics. Charcot–Marie–Tooth disease-

linked mutations interfere with mitochondrial transport by affect-

ing motor protein complexes and the integrity of the cytoskeleton

(Niemann et al., 2006; Baloh, 2008; Vital and Vital, 2012).

Furthermore, mitochondria form an interconnected network by

continuous fusion and fission processes. Fusion allows exchange

of lipids, proteins and mitochondrial DNA. Fission leads to more

mitochondrial entities by generating smaller units. Those can be

transported, sequestered for autophagic degradation, or they fuse

back with other mitochondrial units (Chan, 2012). The balance of

fusion and fission processes determines the mitochondrial morph-

ology and is influenced by stress conditions, altered energy de-

mands, or apoptosis (Youle and van der Bliek, 2012). Impairment

of mitochondrial dynamics interferes with mitochondrial transport,

mitochondrial biogenesis, and leads to loss of mitochondrial DNA

and increased redox stress (Bossy-Wetzel et al., 2003; Chan,

2012; Youle and van der Bliek, 2012).

Different fusion or fission factors of the outer and inner

mitochondrial membrane have been identified (Chan, 2012),

three of which are also mutated in Charcot–Marie–Tooth disease.

First, mutations in the gene encoding the fusion factor of the

mitochondrial outer membrane mitofusin 2 (MFN2) cause a dom-

inantly inherited axonal form of Charcot–Marie–Tooth disease

(CMT2A; Zuchner et al., 2004). Expression of mutant MFN2

alters the mitochondrial morphology and impairs mitochondrial

transport and respiratory activity in neuronal cultures (Baloh

et al., 2007). Transgenic mice expressing Charcot–Marie–Tooth

disease-associated mutant forms of MFN2 develop motor deficits,

associated with altered axonal mitochondrial density and a reduc-

tion of the axonal calibre size and number (Cartoni et al., 2010).

Second, the inverted formin 2 protein (INF2) has been linked to

mitochondrial fission in Charcot–Marie–Tooth disease with glo-

merulopathy (Boyer et al., 2011). INF2 induces the formation of

actin filaments, which initiate mitochondrial constrictions that pre-

cede mitochondrial fission (Korobova et al., 2013). However, it

remains to be determined whether the Charcot–Marie–Tooth dis-

ease-associated mutations in INF2 relate to mitochondrial dy-

namics and/or to impairments of the cytoskeleton (Ramabhadran

et al., 2012). The third factor, ganglioside-induced differentiation

associated protein 1 (GDAP1), is a mitochondrial fission factor

(Niemann et al., 2005, 2009; Pedrola et al., 2005). In addition

GDAP1 influences the peroxisomal morphology (Huber et al.,

2013). Unlike any other Charcot–Marie–Tooth disease-linked

gene, the various identified mutations in GDAP1 are associated

with demyelinating, axonal, or mixed forms of Charcot–Marie–

Tooth disease with recessive or dominant modes of inheritance,

showing a wide range in the severity and onset of disease

(Cassereau et al., 2011a, b). In general, dominantly inherited

forms of GDAP1-associated Charcot–Marie–Tooth disease have a

later onset than recessively inherited forms (Zimon et al., 2011).

Mutations leading to a premature stop of translation or lying

within the carboxy-terminal tail-anchor of GDAP1, the mitochon-

drial and peroxisomal targeting domain, cause the most severe

forms with onset of disease within the first decade of life

(Wagner et al., 2009; Cassereau et al., 2011a; Kabzinska et al.,

2011; Huber et al., 2013). Mutated forms of GDAP1 impair mito-

chondrial dynamics in cultured cells. Recessively inherited GDAP1

mutants have reduced fission activity, whereas dominantly in-

herited mutants impair mitochondrial fusion (Niemann et al.,

2005; Pedrola et al., 2005; Wagner et al., 2009). Based on se-

quence comparisons, GDAP1 and its paralogue GDAP1L1 have

been characterized as founders of a new glutathione S-transferase

family (Marco et al., 2004). Whether GDAP1 has glutathione

S-transferase activity is unclear, as for recombinant GDAP1 no

glutathione S-transferase activity was detected in vitro

(Shield et al., 2006). However, the involvement of GDAP1 in

glutathione-mediated processes has been indirectly demonstrated,

as GDAP1 expression levels correlated with the survival of cultured

cell lines under oxidative stress conditions by influencing the cel-

lular glutathione content (Noack et al., 2012). Charcot–Marie–

Tooth disease-associated GDAP1 mutants have lost this protective

effect, thereby providing a hint that the disease might be linked to

oxidative stress (Noack et al., 2012). Interestingly, MFN2 activity

is increased by oxidized glutathione (Shutt et al., 2012) and

CMT2F-causing mutations in HSP27 (now known as HSPB1)

have also been associated with oxidative stress (Zuchner and

Vance, 2006).

Here we introduce an animal model mimicking severe forms of

Charcot–Marie–Tooth disease caused by GDAP1 mutations. The

Gdap1 knockout mice develop a late-onset peripheral neuropathy

with a reduced nerve conduction velocity and hypomyelination.
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The phenotype is dependent on loss of GDAP1 expression in

Schwann cells, with mild impairment of the mitochondrial trans-

port in axons. Further analysis reveals a novel mechanistic link

between the GDAP1-family of proteins and oxidized

glutathione-associated stress.

Materials and methods

Gdap1 mutant mice
Transgenic mice carrying loxP sites flanking exon 5 of the Gdap1 gene

(Gdap1flox), were generated by the Mouse Clinical Institute (MCI,

Strasbourg, France) using standard procedures of homologous recom-

bination in murine embryonic stem cells. Gdap1 knockout (Gdap1�/�)

mice were established by breeding Cre deleter mice with homozygous

Gdap1flox/flox mice. Genotypes of mice were determined by PCR on

genomic DNA derived from ear biopsies (Supplementary material). For

conditional ablation the P0-cre and Hb9-cre lines have been described

(Arber et al., 1999; Feltri et al., 1999, 2002). Nerve crush injury and

electron microscopy of nerve tissues were as described (Somandin

et al., 2012). Electrophysiological measurements and behavioural

tests were analysed as described (Horn et al., 2012). All performed

experiments with mice followed approved protocols (Veterinary Office

of the Canton Zurich, Switzerland). Wild-type animals, cre-negative

animals or cre-positive animals without floxed GDAP1 alleles served

as controls.

Quantitative polymerase chain reaction
Reverse transcription was performed as described (Niemann et al.,

2005). Mitochondrial DNA and genomic DNA from tissue were pur-

ified by using genomic DNA isolation Kit and G20 columns (Qiagen).

DNA was resuspended in Tris-EDTA (TE) buffer, sonicated in a water

bath for 10 min and dissolved overnight (Malik and Czajka, 2013). The

quantitative PCR was performed in two different dilutions of DNA

input (between 5 ng and 160 ng) using primers (330 nM) and

6-carboxyflurescein (FAM)-labelled tetramethylrhodamine (TAMRA)-

quenched probes (20 nM; Microsynth). Gdap1l1 transcripts were de-

tected by quantitative PCR using SYBR� Green PCR Master Mix

(Applied Biosystems) in relation to 18S ribosomal RNA as published

(Niemann et al., 2005), all other quantitative reverse transcribed PCRs

were quantified in relation to b-actin on a Light Cycler 480 II (Roche),

using LightCycler 480 SYBR� Green I Master Mix or Light Cycler 480

Probes Master (Roche). Primers and probes are listed in the

Supplementary material.

Constructs
Constructs for transient transfections, lentiviral vectors and production

of viruses have been described (Niemann et al., 2005, 2009; Wagner

et al., 2009; Huber et al., 2013). GDAP1L1 was cloned from murine

complementary DNA (Supplementary material). Mutations and fusion

proteins were generated as described (Wagner et al., 2009).

Cell culture
Dorsal root ganglia of Gdap1�/� and control animals were isolated

from embryonic Day 13.5 mice and infected with lentivirus

(Supplementary material). HEK-293T and N1E-115 cells were main-

tained, transfected and infected as described previously (Niemann

et al., 2009). N1E-115 cells were incubated for 2 h with 10 mM rote-

none, 1 mM dithiothreitol (DTT), 0.1 mM hydrogen peroxide (H2O2),

10 mM cyanide m-chlorophenylhydrazone (cccp), 20mM menadione,

100 mM tert-butylhydroquinone (TBHQ), 20mM 2,3-dimethoxy-1,4-

naphthoquinone (DNMQ), if not indicated differently. 1 mM N-

acetyl-L-cystein (NAC) was applied 3 min before treatment with

other drugs. All drugs were purchased from Sigma.

Live cell imaging and analysis

Dorsal root ganglion explant cultures were imaged with a �40 Plan-

Apo lens at the Olympus IX81 equipped with Cell-R software

(Olympus) and Hamamatsu Orca ER (Hamamatsu). During imaging

cultures were maintained at 37�C and 5% CO2. The proximal 100

to 200mm of a neurite were imaged for 5 min with 30 images/min.

The acquired movies were analysed by MetaMorph software 7.7.5

(Molecular Devices). Results were exported to Microsoft Excel.

Immunocytochemistry

Immunocytochemistry, immunohistochemistry and image processing

was performed as described (Niemann et al., 2005). Antibodies:

anti-GDAP1 (Niemann et al., 2005), rabbit anti-GDAP1L1 antiserum

(Pineda; Supplementary material and Supplementary Fig. 4C),

anti-cytochrome c (Pharmingen).

Biochemical methods
Fractionations experiments from spinal cord and cultured cells were

performed as described (Niemann et al., 2009; Li et al., 2010).

Western blotting, detection and quantification were performed as

described (Niemann et al., 2005). Antibodies: anti-GDAP1 (Niemann

et al., 2005), anti-GDAP1L1 (Pineda; Supplementary material and

Supplementary Fig. 4A), anti-glyceraldehyde 3-phosphate dehydro-

genase (GAPDH; HyTest), anti-Porin/voltage dependent anion channel

(VDAC; Abcam) and anti-b-actin (Sigma).

Results

Challenging peripheral nerves reveals
defects in Gdap1�/� mice
Mutations in GDAP1 cause various forms of Charcot–Marie–Tooth

disease. The most severe forms with early onset and severe

progression of disease are caused by recessively inherited muta-

tions leading to a truncated protein or by a mutation within the

C-terminal tail-anchor domain, which interferes with the targeting

information (Cassereau et al., 2011b; Kabzinska et al., 2011). We

generated a transgenic mouse line with exon 5 of Gdap1 flanked

by loxP sites (Fig. 1A). Gdap1flox/flox mice were crossed with cre-

deleter lines to ablate GDAP1 expression in the germline and bred

to obtain wild-type, heterozygous and knockout animals (Gdap1

wt/wt, Gdap1 wt/- and Gdap1�/�). We confirmed by reverse

transcriptase PCR that deletion of exon 5 resulted in a transsplicing

from exon 4 to exon 6 (Fig. 1B). The resulting transcript lacking

exon 5 harbours the start codon and the first 193 amino acids of

GDAP1 plus 25 extra amino acids as a result of a frame-shift by

the splicing from exon 4 to 6 (K193fsX219; Fig. 1A). Thus the

Gdap1�/� mice resemble truncation mutations found in patients

with Charcot–Marie–Tooth disease (S162fsX166, I186fsX205,
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R191X or S194X), which have been linked to axonal, demyelinat-

ing or intermediate forms of Charcot–Marie–Tooth disease with

early onset (Cassereau et al., 2011a). Western blot analysis re-

vealed loss of GDAP1 expression in Gdap1�/� animals. No trun-

cated protein was detectable at the predicted size of 25 kDa,

suggesting protein instability (Fig. 1C). In line with this finding,

the GDAP1 Q163X protein is also unstable upon transient over-

expression in COS-7 cells (Niemann et al., 2005). Gdap1 + / + ,

Gdap1 + /� and Gdap1�/� mice were born in normal Mendelian

ratio (not shown), grew normally (Supplementary Fig. 1A), and

showed no signs of peripheral neuropathies. In 13-month-old

mice, motor and sensory studies revealed no significant differences

between mutant and control animals (Supplementary Fig. 1B and

C). To investigate changes in gene expression patterns of

Gdap1�/� mice, we isolated motor neurons by laser dissection

and took sciatic nerve lysates of 2-month-old mice, purified

RNA, and compared expression profiles for Gdap1�/� and wild-

type animals by Affymetrix GeneChip arrays. Cluster analysis re-

vealed no significant changes, nor did we identify alterations in the

expression of individual genes that could provide hints for com-

pensatory adjustments in Gdap1�/� mice. The expression profile

array data have been deposited in NCBI’s Gene Expression

Omnibus (GEO) and are accessible through GEO Series accession

number GSE51650 (Supplementary material).

As no overt phenotype was detectable up to 13 months, we

challenged peripheral nerves by performing a sciatic nerve crush in

2-month-old mice (Gillespie et al., 2000; Ewaleifoh et al., 2012;

Bogdanik et al., 2013). After a regeneration period of 2 months,

sciatic nerves of wild-type and Gdap1�/� mice were analysed

distal to the site of injury by transmission electron microscopy.

Figure 1 Gdap1�/� animals display hypomyelination after nerve crush. (A) The ablation of exon 5 in the Gdap1 locus generates a

premature stop codon in exon 6 as a result of a frame shift (triangles: introduced loxP sites; START: translation start codon; STOP:

translational stop codon; arrows indicate primer pairs used for reverse transcriptase-PCR). (B) Reverse transcriptase-PCR demonstrates the

trans-splicing from exon 4 to 6 in Gdap1�/� animals. The sizes of the predicted PCR products for the wild-type transcript (arrow; 383 bp)

and the trans-spliced transcript (arrow head; 269 bp) are indicated. (C) Loss of GDAP1 protein in mutant mice (arrow: wild-type protein;

arrowhead: size of the predicted GDAP1 K193fsX219 protein: note that the antiserum detects the amino-terminus of GDAP1).

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) served as loading control. (D) Representative ultrathin sections of unilaterally

crush-lesioned sciatic nerves of 4-month-old wild-type and Gdap1�/� mice analysed by transmission electron microscopy. Two month

post crush sections were obtained 3 mm distal to the site of injury. Scale bar = 5 mm. (E) Quantitative morphological analysis of sciatic

nerve sections. One hundred randomly selected axons per crushed and uncrushed nerve were measured per animal. Values represent

mean and standard error of three animals per genotype: n.s. = not significant, *P50.05.
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The nerve fibres of both Gdap1�/� and wild-type animals were

remyelinated (Fig. 1D), but remyelination was less effective in

Gdap1�/� animals as indicated by a significantly higher g-ratio

compared with remyelinated controls (Fig. 1E). This hypomyelina-

tion in injured Gdap1�/� mice was accentuated in large calibre

axons (quantification not shown), even though axons of all mye-

lination-competent calibres were remyelinated (Fig. 1D).

Uncrushed, contralateral nerves revealed no difference in the

g-ratios of Gdap1�/� and control animals (Fig. 1E). In summary,

we did not detect pathological changes in Gdap1�/� mice within

the first 13 months of age. Nevertheless, the alterations observed

after challenging peripheral nerves of mutant mice by nerve injury

prompted us to analyse later time points.

Late onset peripheral neuropathic
changes in Gdap1�/� mice
In line with our previous results, we found no changes in nerve

conduction velocities or compound muscle action potential ampli-

tudes by electrophysiological measurements in 14-month-old

Gdap1�/� mice as compared with controls (Fig. 2B and

Supplementary Table 1). In contrast, in 19-month-old Gdap1�/�

animals, nerve conduction velocities were significantly reduced by

25% compared with age-matched controls (Fig. 2A and B), con-

sistent with a late-onset demyelinating phenotype. After stimula-

tion at the sciatic notch (proximal stimulation), the compound

muscle action potential amplitudes were significantly reduced in

19-month-old Gdap1�/� mice when compared with controls,

whereas significance was not reached using more distal stimulation

at the tibial nerve (Supplementary Table 1). As the compound

muscle action potentials were not clearly dispersed, the reduction

in the compound muscle action potential amplitudes does not ob-

viously attribute to a pure myelin disorder, but might also reflect

an additional axonal phenotype. To investigate axonal pathology

of 19-month-old animals, we carried out histological analysis of

the plantar nerve, a distal peripheral nerve, as in Charcot–Marie–

Tooth disease the longest nerves are the first and most severely

affected. Only minor differences appeared in electron micrographs

of knockout animals compared with age-matched controls

(Fig. 2C). However, morphometric analyses revealed hypomyelina-

tion in 19-month-old Gdap1�/� mice compared with controls

(Fig. 2D and Supplementary Fig. 2A) with no detectable axonal

loss (Fig. 2E). Both, Schwann cells and neurons express GDAP1 in

the myelinated peripheral nerves, and it has been proposed that

GDAP1 is even mainly expressed by neurons (Niemann et al.,

2005; Pedrola et al., 2005, 2008). Thus, to confirm the unex-

pected predominant myelin disorder phenotype, we disrupted

Gdap1 by cre-mediated ablation specifically in Schwann

cells (P0-cre Gdap1flox/flox) or in motor neurons (Hb9-cre

Gdap1flox/flox). Ablation of GDAP1 in Schwann cells reduced

nerve conduction velocities comparable to total knockout animals,

whereas motor neuron-specific loss of GDAP1 caused no signifi-

cant changes when compared with controls (Fig. 2A and B).

Moreover, compound muscle action potentials were not decreased

in Hb9-cre Gdap1flox/flox animals (3.78 � 0.41 mV ms; n = 8; con-

trols: 3.0 � 0.35 mV ms n = 8), indicating that the compound

muscle action potential reduction observed in Gdap1�/� mice

was likely not due to a motor neuron/axon-autonomous path-

ology. To further support that ablation of GDAP1 expression in

Schwann cells recapitulates the phenotype of Gdap1�/� mice, we

analysed also the plantar nerve of 19-month-old P0-cre

Gdap1flox/flox mice morphologically. We found significant hypo-

myelination and no axonal loss in 19-month-old P0-cre

Gdap1flox/flox mice comparable to Gdap1�/� mice (Fig. 2D and

E). Taken together, our results indicate that loss of GDAP1 expres-

sion in Schwann cells is sufficient to cause a hypomyelinating per-

ipheral neuropathy phenotype in aged mice.

Alterations of intra-axonal mitochondria
in Gdap1�/� mice
GDAP1 influences mitochondrial morphology. Thus, mutations in

GDAP1 might lead to impaired mitochondrial transport in line with

that especially long peripheral axons might be afflicted

(Pedrola et al., 2008). Initial studies in cell lines lead to inconsist-

ent results (Niemann et al., 2009; Pla-Martin et al., 2013). Thus,

to address this point, we analysed the distribution of mitochondria

in axons of plantar nerves of wild-type, Gdap1�/�, P0-cre

Gdap1flox/flox and cre-negative control animals. To quantify

changes in the distribution of mitochondria, we determined the

axonal area covered by mitochondria in percentage and defined

this value as the m-ratio. This m-ratio was consistent for different

mice of the same genotype, and was increased in Gdap1�/� mice

compared with age-matched controls (Fig. 2C and F). In contrast,

no change in the m-ratio was observed in P0-cre Gdap1flox/flox

animals in comparison to age-matched controls (Fig. 2C and F),

demonstrating that the mitochondrial changes in axons do not

originate from the loss of GDAP1 expression in Schwann cells.

As the m-ratio is influenced by the axonal calibre, and the

number and sizes of mitochondria, we analysed these parameters

in more detail. The axonal calibres were identical in Gdap1�/�

mice and controls (Supplementary Fig. 2B), and the increase in

the number of mitochondria in the axons of Gdap1�/� was

minor, not reaching significance (Supplementary Fig. 2C). Yet,

the size of the mitochondria in Gdap1�/� axons was significantly

increased in comparison to control animals (Supplementary Fig.

2D). Taken together, the morphometric analysis of axonal mito-

chondria revealed that ubiquitous loss of GDAP1 affects mitochon-

dria of the plantar nerve, whereas selective loss of GDAP1

expression in Schwann cells does not. Thus, our data are consist-

ent with a cell-autonomous effect also in neurons. Furthermore,

the increased m-ratio in Gdap1�/� nerves reflects changes in

mitochondrial sizes and is not indicative of a major transport

deficit.

To pursue the transport issue directly, we investigated

mitochondrial transport in dorsal root ganglion explant cultures

of control and Gdap1�/� animals. Embryonic Day 13.5 embryos

of wild-type or Gdap1�/� mice were dissected and dorsal root

ganglion neurons were taken into culture and infected with lenti-

viral particles encoding DsRed with a mitochondrial leader se-

quence. When expression of mitochondrially targeted DsRed was

detectable, cultures were analysed by live-cell imaging (Fig. 3A).
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Figure 2 Aged Gdap1�/� mice develop a hypomyelinating peripheral neuropathy. (A) Nerve conduction velocity (NCV) measurements

of 19-month-old mice with different genotypes are shown as representative original recordings. The broken line represents onset (distal

latency) of compound muscle action potentials in unaffected mice. Arrows denote a delayed compound muscle action potential onset

(prolonged distal latency) in affected mice. Note that there is no relevant difference in shape and duration of compound muscle action

potentials. F-waves are identified by arrowheads. (B) Nerve conduction velocities are represented as means and standard error, n = 6 to 11

animals per genotype and age group; variations of age are indicated as standard error; controls are a group of wild-type and cre-negative
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As no evident difference was observed between wild-type and

Gdap1�/� cultures, we quantified the transport events.

Comparable numbers of mitochondria were stationary, or travelled

in anterograde and retrograde direction in neurons of Gdap1�/�

and wild-type mice (Fig. 3B). Also the velocities of the mitochon-

drial transport were not significantly reduced in Gdap1�/� cul-

tures (Fig. 3C). However, the velocity calculations do not take

into account that mitochondria often pause and then continue

their movements. Indeed, when we analysed the pausing in

more detail, we found that significantly more mitochondria in

Gdap1�/� cultures pause during anterograde transport events

(Fig. 3D), whereas the pausing lasted significantly longer for mito-

chondria transported in retrograde direction (Fig. 3E). In summary,

we identified subtle changes in mitochondrial transport in cultured

dorsal root ganglion neurons commensurate with the trend that

we observed toward a slight increase in the number of mitochon-

dria in the morphological analysis of peripheral nerve axons.

Increased mitochondrial DNA biogen-
esis in peripheral nerves of Gdap1�/�

mice
Impairing mitochondrial dynamics influences the mitochondrial

DNA content. Blocking mitochondrial fusion leads to a reduction

or loss of mitochondrial DNA, which can be quantified by the ratio

between mitochondrial DNA and genomic DNA (Chen and Chan,

2010; Malik and Czajka, 2013). Expression knockdown of the

mitochondrial fission factor dynamin-related protein 1 (DRP1,

now known as DNM1L) also reduces the mitochondrial DNA con-

tent (Parone et al., 2008), whereas in Drp1�/� mouse embryonic

fibroblasts the mitochondrial DNA content was not significantly

altered (Ishihara et al., 2009). As GDAP1 is a mitochondrial fission

factor and mitochondrial morphology was altered in the plantar

nerve of Gdap1�/� animals (Supplementary Fig. 2D), we deter-

mined the mitochondrial DNA content in relation to the genomic

DNA. Unexpectedly, the mitochondrial to genomic DNA-ratio was

significantly increased in the sciatic nerve of Gdap1�/� animals

compared with age-matched controls (Fig. 4A). Increased mito-

chondrial DNA contents are characteristic for mild, persistent oxi-

dative stress, which is not overloading the intracellular antioxidant

system (Lee and Wei, 2005; Scarpulla et al., 2012). Nuclear fac-

tors have been identified to regulate this protective response

(Lee and Wei, 2005; Moreno-Loshuertos et al., 2006; Malik and

Czajka, 2013). The peroxisome proliferator-activated receptor

gamma coactivator 1� (PGC1�, now known as PPARGC1A) regu-

lates various aspects of mitochondrial biogenesis, including the

protective mitochondrial DNA increase. PGC1� influences the

mitochondrial DNA replication in concert with other nuclear fac-

tors and coactivators, mainly nuclear respiratory factors 1 and

2 (NRF1, NRF2) and oestrogen-related receptor � (ERR�, now

known as ESRRA). The transcription factor A, mitochondrial

(TFAM) is one of the factors being induced by PGC1� and its

coactivators. As mitochondrial factor, TFAM positively regulates

the mitochondrial DNA copy number. Additionally, PGC1� and

ERR� induce sirtuin 3 (SIRT3), which activates reactive oxygen

species-protective pathways in mitochondria, i.e. the mitochondrial

superoxide dismutase 2 (SOD2; Lee and Wei, 2005; Scarpulla

et al., 2012). We found that the messenger RNA levels of

Pgc1� are significantly increased in the sciatic nerves of

Gdap1�/� mice compared with controls (Fig. 4B). In addition

Err�, Tfam and Sod2 were elevated although significance was

not reached due to variability in Gdap1�/� samples. No changes

in Sirt3 levels were detectable (Fig. 4B). Collectively, our findings

support that mild, persistent oxidative stress leads to an increase in

the mitochondrial DNA content in sciatic nerves of 19-month-old

Gdap1�/� mice. Strikingly, none of these changes were detected

in highly GDAP1 expressing CNS tissues (Niemann et al., 2005;

Pedrola et al., 2005) (Fig. 4A and B).

To confirm further the tissue-specificity of the phenotype of

Gdap1�/� mice, we analysed the cerebellum and the retina mor-

phologically as these tissues are prevalently damaged by impaired

mitochondrial dynamics (Chen and Chan, 2010). As hypomyelina-

tion was the major pathological change in the peripheral nerves,

we also determined the g-ratio in the ventral funiculus of the

spinal cord. We found neither neuronal loss nor hypomyelination

in the analysed samples (Supplementary Fig. 3).

GDAP1L1 is responsive to changes in
the cellular redox state
In search for a molecular mechanism explaining the lack of a CNS

phenotype, we turned to Gdap1l1, the paralogue of Gdap1. We

analysed the expression pattern of Gdap1l1 by quantitative re-

verse transcriptase PCR and western blots. Gdap1l1 is expressed

in the CNS, but not in the PNS (Fig. 5). In immunostainings, the

GDAP1L1 signal co-labels Purkinje cells in the cerebellum, and

neuronal nuclei (NeuN)-positive neurons in cortex and

hippocampus (Supplementary Fig. 4B and C), demonstrating that

Figure 2 Continued
animals. n.s. = not significant, *P50.05. (C) Transverse ultrathin sections of plantar nerves of 19-month-old Gdap1�/� and P0-cre

Gdap1flox/flox (f/f) animals reveal hypomyelination compared to age-matched controls. Scale bars = 5 mm, squares are shown at higher

magnification. (D) Quantitative morphological analysis of ultrathin plantar nerve sections at 19 months showing hypomyelination in

Gdap1�/� and P0-cre Gdap1flox/flox animals compared with wild-type and cre-negative controls. (E) Quantitative analysis of the total

number of myelinated axons in the plantar nerve. (F) The m-ratio, defined as the percentage of the area covered by intra-axonal

mitochondria divided by the total area of the axon, is significantly increased only in Gdap1�/� animals. (D and F) One hundred randomly

selected myelinated axons were measured per animal. (D–F) represent the means and standard error of independent experiments; cre-

negative controls and P0-cre Gdap1flox/flox: n = 3 animals each; wild-type and Gdap1�/� n = 4 animals each; n.s. = not significant,

*P5 0.05.
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GDAP1L1 expression at least partially overlaps with GDAP1

(Pedrola et al., 2008).

Surprisingly, we found that GDAP1L1 is not a mitochondrial

protein but is mainly cytosolic (Fig. 6A). This was unexpected,

as the targeting-domain of GDAP1, the C-terminal tail-anchor

domain with surrounding basic amino acids (Wagner et al.,

2009), is conserved in GDAP1L1 (Marco et al., 2004). Fusing

the C-terminal domains of GDAP1L1 to the C-terminus of the

green fluorescent protein (GFP) resulted in efficient targeting of

the fusion proteins to mitochondria (Supplementary Fig. 5),

Figure 3 Gdap1�/� dorsal root ganglia explant cultures reveal mild mitochondrial transport impairment. Five to nine dorsal root ganglion

neurons expressing mitochondrially targeted DsRed were imaged per genotype and experiment, resulting in the analysis of 200 to 400

mitochondria per genotype and preparation. The movies were converted into kymographs (A) and quantified (B–E). (A) Representative

kymographs of wild-type and Gdap1�/� neurons reveal no obvious impairment of mitochondrial transport. Vertical lines represent

stationary mitochondria, lines crossing from left to right or right to left represent antero- or retrograde transport, respectively. (B)

Quantification of the number of stationary and moving mitochondria (subdivided in anterograde or retrograde direction) per 100 mm of

neurite length reveals no difference between Gdap1�/� and wild-type cultures. (C) The velocity of moving mitochondria is not altered in

anterograde and retrograde direction in Gdap1�/� neurons. (D) During the acquisition period of 5 min, significantly more mitochondria

moving in anterograde direction pause, (E) and the time a retrograde-moving mitochondrion spends pausing is significantly longer in

Gdap1�/� cultures compared to wild-type controls. (B–E) Graphs represent means and standard error of n = 4 independent culture

preparations per genotype, n.s. = not significant, *P5 0.05, **P50.01.
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Figure 4 Mitochondrial DNA biogenesis is increased in sciatic nerves of Gdpa1�/� mice. (A) DNA of the indicated tissues was isolated

from 19-month-old Gdap1�/� and wild-type mice. The relative amount of mitochondrial DNA (mtDNA) in relation to genomic DNA

(gDNA) was determined by quantitative PCR. (B) Total RNA was isolated from sciatic nerve (SCN) and spinal cord (SPC) lysates from

19-month-old Gdap1�/� and wild-type mice. The relative expression levels of nuclear factors involved in mitochondrial biogenesis

and redox protection were determined by quantitative PCR in relation to b-actin levels. (A and B) Graphs represent means and

standard error of tissues of n = 3 animals per genotype, n.s. = not significant, *P50.05.

Figure 5 The paralogue of Gdap1, Gdap1l1, is expressed in the CNS. (A) Relative Gdap1l1 messenger RNA (mRNA) expression levels in

mouse tissues were determined by quantitative reverse transcriptase PCR in relation to 18S ribosomal RNA. (B) GDAP1L1 protein

expression was determined by western blot using 12 mg protein lysate of indicated murine tissues and anti-GDAP1L1 antiserum

(Supplementary Fig. 4A). b-actin served as loading control. Arrowhead = predicted molecular weight of GDAP1L1.
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Figure 6 Translocation of GDAP1L1 to mitochondria. (A) N1E-115 cells were transiently transfected with GDAP1L1 expression constructs

and treated for 2 h as indicated. Cells were fixed, stained for GDAP1L1 and cytochrome c and examined by immunofluorescence. Single

plane confocal images are shown. GDAP1L1 has mainly a cytosolic localization, which is altered upon treatment with menadione (right).

(B) Primary hippocampal neurons were infected with lentivirus encoding mitochondrially targeted DsRed (MtDsRed). Four days post-

infection, cells were treated for 2 h with menadione or left untreated, fixed and stained for endogenously expressed GDAP1L1. Single

plane confocal images are shown. (C) Twenty-four hours post-transfection with GDAP1L1 expression constructs and subsequent 2 h
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demonstrating that the C-terminal domain of GDAP1L1 has the

potential to efficiently target GDAP1L1 to mitochondria. As

GDAP1L1 is mainly cytosolic, we reasoned that this targeting

domain might be hidden under physiological conditions.

Similarly, the tail-anchor domain containing protein BAX is cyto-

solic in healthy cells and needed for mitochondrial fusion. Upon

induction of apoptosis, BAX translocates to mitochondria

(Karbowski et al., 2006). In analogy, we transiently expressed

GDAP1L1 or GDAP1 in N1E-115 cells and incubated the cells

with different drugs and culture conditions (Fig. 6A and

Supplementary Fig. 6A). In this initial screen GDAP1L1 is cytosolic

under most conditions. Only the treatment with menadione

induced a translocation of GDAP1L1 to mitochondria, which

were identified by cytochrome c immunostaining (Fig. 6A).

The translocation of GDAP1L1 because of menadione was con-

centration- and time-dependent and could be inhibited by

N-acetyl-L-cysteine (Supplementary Fig. 6B–D). Menadione-treat-

ment also induced the mitochondrial translocation of endogenous

GDAP1L1 in primary hippocampal neurons (Fig. 6B).

Menadione is a quinone, which can be conjugated to

glutathione by glutathione S-transferases. Alternatively, mena-

dione can redox cycle, resulting in an increase in cellular

oxidized glutathione at the expense of reduced glutathione

(Watanabe et al., 2004). The naphthoquinone 2,3-dimethyoxy-

1,4-naphthoquinone (DNMQ) can only redox cycle, whereas the

quinone tert-butylhydroquinone (TBHQ) is detoxified by glutathi-

one-conjugation. Only the treatment with DNMQ caused a trans-

location of transiently expressed GDAP1L1 to mitochondria in

N1E-115 cells, suggesting that an increase in oxidized glutathione

levels might induce the translocation (Fig. 6C). Measurements of

reduced and oxidized glutathione concentrations in N1E-115 cells

under the different drug-treatment conditions confirmed that

increased oxidized glutathione levels correlate with GDAP1L1

translocation (Supplementary Table 2).

Next we reconstituted the translocation in vitro. We used

post-nuclear supernatant of N1E-115 cells transiently expressing

GDAP1L1. The post-nuclear supernatant was divided and incu-

bated with either reduced or oxidized glutathione, before sedi-

mentation of the heavy membrane fraction to enrich

mitochondria (Fig. 6D). In untreated (not shown) and reduced

glutathione-treated lysates, GDAP1L1 co-fractionated with the

cytosolic marker protein ß-actin and only a minor fraction

co-sedimented with the mitochondrial marker protein Porin

[2.3 � 0.8% of GDAP1L1 in the post-supernatant is recovered in

pellet 3, n = 3; (mean � standard error)]. Treating the same post-

nuclear supernatant with oxidized glutathione caused a partial co-

sedimentation of GDAP1L1 (10.7 � 1.2%, n = 3). Thus, signifi-

cantly more GDAP1L1 co-fractionated with Porin upon treatment

with oxidized glutathione when compared with reduced glutathi-

one (P50.005). Taking into consideration that the post-transla-

tional insertion of GDAP1L1 into the membrane occurs at 4�C, this

represents efficient targeting (Wagner et al., 2009). As

co-sedimentation does not prove that the protein inserted into

the membrane, we subdivided Pellet 2 of the sedimentation and

washed the pellets with dithiothreitol (DTT), carbonate or TritonTM

X-100 (Fig. 6E). Like the mitochondrial membrane protein Porin,

GDAP1L1 is solubilized only by TritonTM X-100. Surprisingly, treat-

ment with DTT did not lead to the release of GDAP1L1 into the

supernatant, suggesting that the protein, once inserted, will not

leave the membrane in a reducing environment. Collectively, our

results demonstrate that GDAP1L1 can be targeted to

mitochondria under conditions associated with elevated oxidized

glutathione concentrations.

GDAP1L1 induces fission upon
mitochondrial translocation
Long-term loss of GDAP1 expression causes mild oxidative stress

conditions in peripheral nerves (Fig. 4A and B) and in cultured

neuronal cell lines (Noack et al., 2012). Therefore, we carried

out differential centrifugation to enrich mitochondria from the

spinal cord to obtain evidence whether translocation of

GDAP1L1 occurs also in vivo. In the spinal cord of 19-month-

old Gdap1�/� mice, equal amounts of GDAP1L1 were expressed

compared with age-matched controls (Fig. 7A and B). However,

significantly more GDAP1L1 co-sedimented with Porin compared

with the controls (Fig. 7A and B).

We reasoned that upon mitochondrial localization, GDAP1L1

and GDAP1 might fulfil similar functions. GDAP1 expression

induces mitochondrial fission and the knockdown of GDAP1 in

N1E-115 cells leads to mitochondrial elongation, which can be

reverted by the re-expression of GDAP1 (Niemann et al., 2009).

In the same experimental setup, GDAP1L1 expression also

reverted the mitochondrial elongation in Gdap1-knockdown

Figure 6 Continued
treatment with the indicated reagents, N1E-115 cells were analysed on single plane confocal pictures. 2,3-dimethoxy-1,4-naphthoquinoe

(DNMQ, 20 mM) led to a redistribution of GDAP1L1 to mitochondria as visualized by the colocalization with the mitochondrial marker

cytochrome c (arrows). In contrast, tert-butylhydroquinone (TBHQ, 100mM) had no impact on the subcellular distribution of GDAP1L1.

Broken line indicates area shown in higher magnification. (D) N1E-115 cells were transiently transfected with GDAP1L1 expression

constructs and homogenized using a Dounce homogenizer on the next day. The post-nuclear supernatant of the lysate was divided in two

and incubated with reduced glutathione (GSH) or oxidized glutathione (GSSG). In differential sedimentation steps, cytosolic proteins were

removed as demonstrated by western blot of all purification steps against the cytosolic marker b-actin. In the oxidized glutathione (GSSG)-

treated fraction of the post nuclear supernatant, more GDAP1L1 co-sediments with the mitochondrial marker Porin compared with the

reduced glutathione (GSH)-treated fraction. (E) Pellet 2 of GDAP1L1 expressing cells treated with oxidized glutathione was resuspended in

buffer plus 5 mM dithiothreitol (DTT), in 0.1 M carbonate (pH 11), or in buffer containing 0.1% TritonTM X-100 and sedimented to

separate soluble protein supernatants from membranous pellets. GDAP1L1 and the known transmembrane protein Porin are only

solubilized by detergent. (A–C) Scale bars = 10mm.
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N1E-115 cells (Fig. 7D and Supplementary Fig. 7). In contrast,

expression of GDAP1L1 without the tail-anchor domain (Fig. 7C;

GDAP1L1 340X) was not able to revert the mitochondrial pheno-

type in Gdap1-knockdown cells (Fig. 7D and Supplementary Fig.

7C). We conclude that GDAP1L1 is responsive to oxidative stress

conditions, which leads to mitochondrial translocation, where

GDAP1L1 can compensate for the loss of GDAP1 expression.

Discussion
GDAP1 was characterized as founder of a new glutathione

S-transferase family with unknown glutathione S-transferase activ-

ity and as fission factor (Marco et al., 2004; Niemann et al., 2005,

2009; Pedrola et al., 2005, 2008; Shield et al., 2006; Huber et al.,

2013). In cellular assays, Charcot–Marie–Tooth disease-associated

mutant forms of GDAP1 interfere with the capacity to influence

mitochondrial dynamics (Niemann et al., 2005, 2009; Pedrola

et al., 2005). It has been suggested that mutations in GDAP1

perturb transport, energy production and calcium buffering

(Cassereau et al., 2011b; Pla-Martin et al., 2013). GDAP1 expres-

sion has pro-survival functions in neuronal cell death models asso-

ciated with glutathione depletion (Noack et al., 2012). This

protective survival effect was diminished in Charcot–Marie–Tooth

disease-associated mutant forms of GDAP1 with reduced fission

capacity (Noack et al., 2012). However, it remained unclear how

members of the GDAP1-family are linked to oxidative stress and

mitochondrial dynamics. The Gdap1�/� mice presented here carry

a functional null allele and mimic mutations leading to

Charcot–Marie–Tooth disease (Cassereau et al., 2011a), allowing

us to investigate the underlying disease mechanisms.

Similar to patients with Charcot–Marie–Tooth disease,

Gdap1�/� mice show a progressive phenotype, as young adult

mice (up to 1 year of age) were indistinguishable from wild-type

controls. First signs of a peripheral neuropathy were detected in

aged, 19-month-old Gdap1�/� mice. The animals display mainly

decreased nerve conduction velocities, accompanied by mild hypo-

myelination. These features were recapitulated in mice lacking

GDAP1 specifically and exclusively in Schwann cells. Thus,

GDAP1 function is Schwann cell-autonomously required for

myelin regulation. In contrast, mice with motor neuron-specific

loss of GDAP1 showed no detectable alterations in electrophysio-

logical examinations. These findings are not surprising, albeit

GDAP1-caused Charcot–Marie–Tooth disease is often associated

with major loss of myelinated axons, as axonal neuropathies

Figure 7 Translocation of GDAP1L1 is needed to compensate

for the loss of GDAP1 expression. (A) Spinal cords of 19-month-

old wild-type or Gdap1�/� animals were fractionated by

differential centrifugation. In homogenates from Gdap1�/�

animals, more GDAP1L1 sediments with the mitochondrial

marker Porin compared with age-matched wild-type controls.

b-actin served as maker for the cytosolic fraction. (B) The rela-

tive amounts of GDAP1L1 were quantified by densitometry in

relation to b-actin in the post-nuclear supernatant and the

relative enrichment from GDAP1L1 was determined for pellet 2.

The values obtained from wild-type animals were set to 1 in

each of four independent experiments. Means and standard

error of the mean, n = 4. n.s. = not significant, **P50.005.

(C) The domain structure of GDAP1L1 is illustrated with focus

on the carboxy-terminal domains harbouring the hydrophobic

domain 1 (HD1) and the transmembrane domain (TMD; GST-N

and GST-C: domains conserved in glutathione S-transferases).

The tail-anchored domain is formed by the transmembrane

domain and surrounding positively charged amino acids.

(D) N1E-115 cells were infected with lentiviral particles encoding

non-silencing short-hairpin RNA (shRNA control) or short-

hairpin RNA against Gdap1 (shGDAP1) or were left uninfected.

When the knockdown was detectable (Supplementary Fig. 7A

and B), cells were transiently co-transfected with expression

Figure 7 Continued
constructs encoding mitochondrially targeted DsRed together

with mitochondrially targeted green fluorescent protein (mtGFP)

as negative control, with GDAP1 as positive control, with

GDAP1L1 or with GDAP1L1 340X, lacking the potential tail-

anchor domain of GDAP1L1. The next day cells were fixed and

stained. In blinded countings, the mitochondrial morphology

was assessed by mitochondrially targeted DsRed fluorescence

(Niemann et al., 2005). One hundred randomly selected cells

were analysed per experiment and condition, means and stan-

dard error of the mean, n = 3, n.s. = not significant, **P50.01.
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have been difficult to reproduce in mice for unknown reasons

(Robertson et al., 2002; Bogdanik et al., 2013). As a consequence,

in mouse models of intermediate forms of Charcot–Marie–Tooth

disease, the myelin phenotype is likely to be favoured. Despite this

discrepancy to human diseases, the analysis of these models is of

major value for the understanding of the disease-underlying bio-

chemical and cell biological mechanisms, including genetic inter-

actions (Ewaleifoh et al., 2012; Bogdanik et al., 2013). In

agreement with a less pronounced axonal phenotype we found

alterations in the morphology of intra-axonal mitochondria in

Gdap1�/� animals, but not in mice lacking GDAP1 exclusively

in Schwann cells. Furthermore, we detected a mild transport def-

icit in primary dorsal root ganglion explant cultures of Gdap1�/�

mice. The consequences of these changes might accumulate

within the first decade of life in the longer axons of peripheral

nerves in patients leading to the observed axonal deficits.

Mitochondrial fusion and fission, and mitochondrial transport

are tightly linked (Baloh, 2008; Vital and Vital, 2012). The loss

of MFN2 or expression of mutant forms of MFN2 found in pa-

tients with Charcot–Marie–Tooth disease impaired mitochondrial

transport and increased mitochondrial pausing (Misko et al.,

2010). We found that loss of GDAP1 expression did not impair

transport, however, increased mitochondrial pausing in Gdap1�/�

sensory neuron cultures was observed. The molecular trigger and

function of pausing are still unclear. Recently, it has been pro-

posed that the positioning of mitochondria is used to influence

redox-dependent signalling pathways (Murphy, 2012). Along this

line, changes in the redox microenvironment might cause the

increasing pausing in MFN2 and GDAP1 mutant axons.

MFN2 activity has been linked to oxidized glutathione on a

molecular level, and overlapping functions of MFN2 and GDAP1

in regulating glutathione levels were suggested (Ryan and

Stojanovski, 2012; Shutt et al., 2012). Oxidized glutathione oxi-

dizes MFN2 to form disulphide-mediated mitofusin oligomers,

which increase mitochondrial fusion efficiency under redox stress

conditions (Shutt et al., 2012). We found that GDAP1L1, the

paralogue of GDAP1, translocates to mitochondria under stress

conditions with increased reduced to oxidized glutathione ratio.

In vitro, oxidized glutathione is sufficient to induce membrane

insertion of GDAP1L1. In vivo, loss of GDAP1 expression increases

the amount of GDAP1L1 in the mitochondrial fraction of the

spinal cord of aged mice. As a change in redox conditions could

not release GDAP1L1 from the membranous fraction in vitro, the

accumulation of GDAP1L1 at mitochondria of the spinal cord is

likely to be cumulative over time. Interestingly, GDAP1L1 also

accumulates at the mitochondria of the spinal cord in the trans-

genic rats expressing mutated SOD1G93A compared with trans-

genic rats expressing wild-type SOD1 (Li et al., 2010), revealing

that the translocation of GDAP1L1 to mitochondria is not a pecu-

liar situation caused by loss of GDAP1 expression. Rather these

data suggest broader relevance of our findings in that similar stress

conditions might occur in the SOD1G93A model for amyotrophic

lateral sclerosis and in the Gdap1�/� model for Charcot–Marie–

Tooth disease. As the SOD1G93A mutation and GDAP1 expres-

sion levels were both linked to glutathione levels (Muyderman

et al., 2009; Noack et al., 2012), we determined the reduced

and oxidized glutathione concentrations in the peripheral nerves

and in different regions of the CNS (spinal cord, cerebellum,

cortex) in aged Gdap1�/� and age-matched controls. Our meas-

urements did not reveal differences (not shown). This is not sur-

prising, as drastic changes in glutathione-levels would be expected

to lead to more dramatic damage, whereas minor changes might

be missed in vivo (Townsend et al., 2003; Noack et al., 2012).

Mild but persistent oxidative stress conditions in Gdap1�/� ani-

mals are supported by the increased mitochondrial DNA content

and PGC1� expression levels that we found in sciatic nerves

(Lee and Wei, 2005; Malik and Czajka, 2013), and by the

increased translocation of GDAP1L1 in the spinal cord.

Furthermore, as mitochondrial DNA content and PGC1� expres-

sion levels are not altered in the spinal cord of Gdap1�/� mice,

and GDAP1L1 can induce mitochondrial fission in the absence of

GDAP1, we propose that mitochondrial GDAP1L1 is able to

compensate for GDAP1 loss in the CNS.

In summary, Gdap1�/� mice display reduced nerve conduction

velocity and hypomyelination. Ablation of GDAP1 in Schwann cells

is sufficient to cause this phenotype. Mild axonal impairments

were also observed in Gdap1�/� mice, together with persistent

oxidative stress. In the CNS, loss of GDAP1 is compensated by the

mitochondrial translocation of GDAP1L1. We demonstrate that

this recruitment is dependent on elevated oxidized glutathione

levels, providing a novel protective mechanism for GDAP1-family

members acting as sensors for altered cellular redox environment.
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