1,666 research outputs found
Fourth report on the excavations of the Roman fort at Richborough, Kent
This is the fourth report of excavations at Richborough, in Kent, England, conducted by J P Bushe-Fox. Included are descriptions of human remains and artefacts such as pottery, coins, buildings and metalwork, together with an account of the methodology used to unearth these
Axions In String Theory
In the context of string theory, axions appear to provide the most plausible
solution of the strong CP problem. However, as has been known for a long time,
in many string-based models, the axion coupling parameter F_a is several orders
of magnitude higher than the standard cosmological bounds. We re-examine this
problem in a variety of models, showing that F_a is close to the GUT scale or
above in many models that have GUT-like phenomenology, as well as some that do
not. On the other hand, in some models with Standard Model gauge fields
supported on vanishing cycles, it is possible for F_a to be well below the GUT
scale.Comment: 62 pages, v2; references, acknowledgements and minor corrections
adde
Isospin Effects in Nuclear Multifragmentation
We develop an improved Statistical Multifragmentation Model that provides the
capability to calculate calorimetric and isotopic observables with precision.
With this new model we examine the influence of nuclear isospin on the fragment
elemental and isotopic distributions. We show that the proposed improvements on
the model are essential for studying isospin effects in nuclear
multifragmentation. In particular, these calculations show that accurate
comparisons to experimental data require that the nuclear masses, free energies
and secondary decay must be handled with higher precision than many current
models accord.Comment: 46 pages, 16 figure
Dynamical description of quantum computing: generic nonlocality of quantum noise
We develop dynamical non-Markovian description of quantum computing in weak
coupling limit, in lowest order approximation. We show that long range memory
of quantum reservoir produces strong interrelation between structure of noise
and quantum algorithm, implying nonlocal attacks of noise. We then argue that
the quantum error correction method fails to protect quantum computation
against electromagnetic or phonon vacuum which exhibit memory. This
shows that the implicit assumption of quantum error correction theory --
independence of noise and self-dynamics -- fails in long time regimes. We also
use our approach to present {\it pure} decoherence and decoherence accompanied
by dissipation in terms of spectral density of reservoir. The so-called {\it
dynamical decoupling} method is discussed in this context. Finally, we propose
{\it minimal decoherence model}, in which the only source of decoherence is
vacuum. We optimize fidelity of quantum information processing under the
trade-off between speed of gate and strength of decoherence.Comment: 12 pages, minor corrections, softened interpretation of the result
Scientific Highlights of the HETE-2 Mission
The HETE-2 mission has been highly productive. It has observed more than 250
GRBs so far. It is currently localizing 25 - 30 GRBs per year, and has
localized 43 GRBs to date. Twenty-one of these localizations have led to the
detection of X-ray, optical, or radio afterglows, and as of now, 11 of the
bursts with afterglows have known redshifts. HETE-2 has confirmed the
connection between GRBs and Type Ic supernovae, a singular achievement and
certainly one of the scientific highlights of the mission so far. It has
provided evidence that the isotropic-equivalent energies and luminosities of
GRBs are correlated with redshift, implying that GRBs and their progenitors
evolve strongly with redshift. Both of these results have profound implications
for the nature of GRB progenitors and for the use of GRBs as a probe of
cosmology and the early universe. HETE-2 has placed severe constraints on any
X-ray or optical afterglow of a short GRB. It is also solving the mystery of
"optically dark' GRBs, and revealing the nature of X-ray flashes.Comment: 10 pages, 9 figures, to appear in proc. "The Restless High-Energy
Universe", Royal Tropical Institute, Amsterdam; revised text, added ref
Coherent states for exactly solvable potentials
A general algebraic procedure for constructing coherent states of a wide
class of exactly solvable potentials e.g., Morse and P{\"o}schl-Teller, is
given. The method, {\it a priori}, is potential independent and connects with
earlier developed ones, including the oscillator based approaches for coherent
states and their generalizations. This approach can be straightforwardly
extended to construct more general coherent states for the quantum mechanical
potential problems, like the nonlinear coherent states for the oscillators. The
time evolution properties of some of these coherent states, show revival and
fractional revival, as manifested in the autocorrelation functions, as well as,
in the quantum carpet structures.Comment: 11 pages, 4 eps figures, uses graphicx packag
Hybrid materials based on polyethylene and MCM-41 microparticles functionalized with silanes: catalytic aspects of in situ polymerization, crystalline features and mechanical properties
New nanocomposites based on polyethylene have been prepared by in situ polymerization of ethylene in
presence of mesoporous MCM-41. The polymerization reactions were performed using a zirconocene
catalyst either under homogenous conditions or supported onto mesoporous MCM-41 particles, which
are synthesized and decorated post-synthesis with two silanes before polymerization in order to promote
an enhanced interfacial adhesion. The existence of polyethylene chains able to crystallize within
the mesoporous channels in the resulting nanocomposites is figured out from the small endothermic
process, located at around 80 C, on heating calorimetric experiments, in addition to the main melting
endotherm. These results indicate that polyethylene macrochains can grow up during polymerization
either outside or inside the MCM-41 channels, these keeping their regular hexagonal arrangements.
Mechanical response is observed to be dependent on the content in mesoporous MCM-41 and on the
crystalline features of polyethylene. Accordingly, stiffness increases and deformability decreases in the
nanocomposites as much as MCM-41 content is enlarged and polyethylene amount within channels is
raised. Ultimate mechanical performance improves with MCM-41 incorporation without varying the
final processing temperature
Exploring nu signals in dark matter detectors
We investigate standard and non-standard solar neutrino signals in direct
dark matter detection experiments. It is well known that even without new
physics, scattering of solar neutrinos on nuclei or electrons is an irreducible
background for direct dark matter searches, once these experiments each the ton
scale. Here, we entertain the possibility that neutrino interactions are
enhanced by new physics, such as new light force carriers (for instance a "dark
photon") or neutrino magnetic moments. We consider models with only the three
standard neutrino flavors, as well as scenarios with extra sterile neutrinos.
We find that low-energy neutrino--electron and neutrino--nucleus scattering
rates can be enhanced by several orders of magnitude, potentially enough to
explain the event excesses observed in CoGeNT and CRESST. We also investigate
temporal modulation in these neutrino signals, which can arise from geometric
effects, oscillation physics, non-standard neutrino energy loss, and
direction-dependent detection efficiencies. We emphasize that, in addition to
providing potential explanations for existing signals, models featuring new
physics in the neutrino sector can also be very relevant to future dark matter
searches, where, on the one hand, they can be probed and constrained, but on
the other hand, their signatures could also be confused with dark matter
signals.Comment: 38 pages, 8 figures, 1 table; v3: eq 3 and nuclear recoil plots
corrected, footnote added, conclusions unchange
Gamma-ray and radio tests of the e+e- excess from DM annihilations
PAMELA and ATIC recently reported an excess in e+e- cosmic rays. We show that
if it is due to Dark Matter annihilations, the associated gamma-ray flux and
the synchrotron emission produced by e+e- in the galactic magnetic field
violate HESS and radio observations of the galactic center and HESS
observations of dwarf Spheroidals, unless the DM density profile is
significantly less steep than the benchmark NFW and Einasto profiles.Comment: 16 pages, 4 figures; v2: normalizations fixed in Table 2 and typos
corrected (no changes in the analysis nor the results), some references and
comments added; v3: minor additions, matches published versio
- âŠ