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Abstract 

New nanocomposites based on polyethylene have been prepared by in situ 

polymerization of ethylene in presence of mesoporous MCM-41. The polymerization reactions 

were performed using a zirconocene catalyst either under homogenous conditions or supported 

onto mesoporous MCM-41 particles, which are synthesized and decorated post-synthesis with 

two silanes before polymerization in order to promote an enhanced interfacial adhesion. The 

existence of polyethylene chains able to crystallize within the mesoporous channels in the 

resulting nanocomposites is figured out from the small endothermic process, located at around 

80 ºC, on heating calorimetric experiments, in addition to the main melting endotherm. These 

results indicate that polyethylene macrochains can grow up during polymerization either outside 

or inside the MCM-41 channels, these keeping their regular hexagonal arrangements. 

Mechanical response is observed to be dependent on the content in mesoporous MCM-41 and 

on the crystalline features of polyethylene. Accordingly, stiffness increases and deformability 

decreases in the nanocomposites as much as MCM-41 content is enlarged and polyethylene 

amount within channels is raised. Ultimate mechanical performance improves with MCM-41 

incorporation without varying the final processing temperature. 

 

Keywords: Polyethylene; MCM-41 microparticles; silane; hybrids; crystallinity; rigidity.
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1. Introduction 

Interest on polymeric-based nanocomposites has exponentially grown up in the last 

decade and it is currently an area of extreme activity in order to develop new materials. 

Examples in literature exhibit significant improvements in mechanical, electrical, biocidal and 

thermal properties [1-7], which are difficult to be achieved using conventional fillers [8,9]. An 

aspect of significant impact, mainly in weight and cost, is the low reinforcement loadings 

required (typically inferior to 8 wt.%) to attain a noteworthy enhancement in properties. The key 

that triggers these low contents strongly depends on a suitable nanofiller–matrix interfacial 

adhesion that involves an optimal dispersion of nanofillers and their intimate contact with the 

polymeric matrix. Therefore, the formation of large size aggregates should be conveniently 

avoided.  

Polyolefins comprise the most important thermoplastic polymers, owing to their low 

manufacturing cost and rather versatile properties. Then, polyolefins represent almost two-thirds 

of the major commodity thermoplastics used and have an impact on every daily life, in 

applications ranging from automotive parts to high modulus fibers, household and food 

containers, toys, stretch film/shrink film, highly sophisticated capacitor films, diapers and trash 

bags among others. Their applicability might be further spread out although new developments 

should be endowed to make polyolefins capable of competing with more specific and expensive 

polymers. Nanotechnology has become a valuable tool to improve their final properties, 

allowing obtainment of new functionalities and tunable responses for their use in advanced 

applications at affordable costs. 

Ordered mesoporous silicas, with high surface area and pore sizes, have shown high 

potential as supports in olefin polymerization in recent years. For instance, metallocene 

catalysts supported on MCM-41 give rise to catalytic systems with interesting properties in 

terms of activity and polymer characteristics, due to the confinement effects that may arise from 

the polymerization inside the porous structure [10-12]. The polymerization of olefins using 

MCM-41-supported metallocene catalysts has also opened an interesting approach to prepare in 

situ (nano)composites, since MCM-41 shows a stable 3D framework that consists of hexagonal 
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arrangements with nanosized pores. This ordered structure confers to MCM-41 a high porosity 

and surface area [13] that makes possible in-situ polymerization of organic monomers within its 

pores. Furthermore, the existence of polymeric chains coming out from the channels might also 

favor interactions between the mesoporous silica and the polymer matrix that, as 

aforementioned, are critical to get materials with enhanced performance. Thus, improved 

mechanical properties [14] and an easier degradability [15] have been reported in hybrid 

materials prepared by in-situ ethylene polymerization in presence of MCM-41. Those 

mesoporous particles acted as catalyst supports and as inorganic fillers. 

A recent step forward involved the use of undecenoic acid as an interfacial agent to 

provoke a reduction in effective aggregate size, attempting to hinder MCM-41 particle 

agglomeration and, consequently, to promote better MCM-41 particle dispersion. Those new 

materials showed an interesting gas permeation behavior [16] and an enhanced mechanical 

response [17] compared with those exhibited by their neat counterparts. Nevertheless, 

incorporation of undecenoic acid within the macromolecular architecture (even at a very small 

amount) implies a reduction in the polymeric crystallinity and crystal size. To overcome this 

shortcoming, organosilanes are now proposed to boost adhesion at organic-inorganic interfaces, 

since these molecules can be easily grafted onto the surface of silica MCM-41 via hydrolysis 

with superficial silanol groups. Stable covalent bonds can be formed and an important 

hydrophobic character may be created at the silica particle surface depending on the silane 

functionalities. This increase in the hydrophobicity of the silica particles could help to disperse 

them conveniently into the polymeric matrix. Recently, various organosilanes have been used as 

coupling agents [18] during preparation, by melt blending method, of silica/PP composites.  

The main aim of this work is, therefore, the preparation of nanocomposites based on 

silane functionalized MCM-41 particles and high density polyethylene (HDPE) by in situ 

polymerization, as well as evaluation of their crystalline structure, thermal properties and 

mechanical behavior. To reach those purposes, the previous decoration of mesoporous MCM-41 

particles with two different silanes, chloro(dimethyl)vinylsilane and trimethoxy(7-octen-1-

yl)silane, is required for their use either only as fillers (polymerization taking place in a 
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homogeneous medium) or as catalyst supports and fillers (polymerization being carried out now 

under heterogeneous conditions). The effect of MCM-41 functionalization on the catalytic 

activity is analyzed in terms of the type of silane and of the polymerization approach used 

(homogeneous vs. heterogeneous). Once the materials are obtained, X-ray scattering 

measurements at wide and middle angle regions (WAXS and MAXS, respectively), differential 

scanning calorimetry (DSC) experiments, and scanning and transmission electron microscopy 

(SEM and TEM, respectively) observations have been carried out to evaluate the crystalline 

structure and morphological characteristics. Moreover, thermogravimetric measurements are 

used to examine their thermal stability. As well the viscoelastic and mechanical behavior of 

these materials is studied by performing dynamic mechanical thermal analysis (DMTA) tests 

and depth sensing indentation, DSI, experiments. 

2. Experimental Section 

2.1. Materials and Chemicals 

All manipulations were performed under dry nitrogen using standard Schlenk 

techniques. Ethylene and nitrogen (Air Liquide) were purified through absorption columns 

containing molecular sieves 4A and 13X. Methylaluminoxane (MAO, 10 wt.% in toluene 

solution, Albermale), Cp2ZrCl2, chloro(dimethyl)vinylsilane (VS), trimethoxy(7-octen-1-

yl)silane (OES), purchased from Aldrich were used as received. Toluene (Petrogal) was distilled 

over sodium under a dry nitrogen atmosphere, using benzophenone as indicator.  

2.2. Preparation of MCM-41 particles 

The synthesis procedure and the characterization of microsized MCM-41 particles are 

described extensively elsewhere [19], its structural parameters being reported in Table 1. MCM-

41 was dried for 2h at 300 ºC with nitrogen purging, cooled and stored under dry nitrogen 

before its use. 

2.3. Post-synthesis functionalization of MCM-41 microparticles  

VS (1.0 mL) was added to a previously sonicated slurry of MCM-41 (1 g) in 50 mL of 

toluene, and kept under magnetic stirring at 70 °C for 24 h. The mixture was then extensively 
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washed with toluene and acetone to rinse away any residual chemicals. Finally, the powder was 

dried at 50 °C under vacuum for 24 h. 

OES (1.9 mL) was added to a previously sonicated slurry of 1 g of mesoporous silica 

powder in 45 mL of toluene. The mixture was refluxed for 24 h under magnetic stirring. The 

solid was, then, filtered and washed with acetone, placed in a Soxhlet and extracted with 

acetone for 4 h. Finally, the powder was dried at room temperature under vacuum for 24 h.  

2.4. Catalytic tests 

Polymerizations were carried out in a 250 cm3 dried and nitrogen-flushed bottle for 

pressure reactions (Wilmad LabGlass LG-3921) magnetically stirred, using toluene as solvent. 

Polymerizations were performed at 25ºC and 1.1 bar of ethylene. Temperature, ethylene 

consumption and pressure were monitored at real time using data acquisition and control 

software, enabling to obtain kinetic profiles. The polymerizations were run up to a specific 

amount of ethylene consumed. Polymerization mixtures were quenched by the addition of 

acidified methanol. The polymer was collected and washed twice with methanol before drying. 

Two synthetic approaches are checked in order to evaluate the effect that catalyst 

immobilization on the silane-modified MCM-41 has on the ultimate characteristics of the 

resulting materials: method A, which consists of performing polymerization with the catalyst in 

a homogeneous medium; and method B, based on supporting the catalyst on silane-modified 

MCM-41. The supported catalysts prepared here show a zirconium load of 18.7 mmol/g MCM-

41. The details of both methodologies can be found in the Supporting Information. 

2.5. Characterization of neat and functionalized MCM-41 particles 

All the samples were analyzed for phase identification by powder XRD in a Panalytical 

X'Pert Pro equipment, using CuKα radiation filtered by Ni and an X'Celerator detector. 

Fourier Transform infrared (FTIR) spectra were recorded on a Thermo Nicolet Nexus 

instrument (64 scans with a resolution of 4 cm−1). Self-supported wafers (≈10 mg) of MCM-41 

powder were placed in an infrared quartz cell and then evacuated under primary vacuum (10-2 

Torr) at 150 ºC. The background spectrum, recorded under identical operating conditions, was 

automatically subtracted from each sample spectrum. 
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Thermogravimetry measurements for characterizing the different MCM-41 

microparticles were performed on a TGA 92 SETARAM under air atmosphere at a heating rate 

of 10 ºC/min. The mesoporous silica samples were fully hydrated before the analysis. 

Nitrogen adsorption isotherms were measured at −196 ºC in ASAP 2010 Micromeritics 

equipment. Prior to the experiments, the unmodified MCM-41 sample was degassed at 300 ºC 

for 3 h while the modified samples of MCM-41 were degassed at 150 ºC for 7 h in order to 

prevent any organic degradation. 

29Si MAS NMR spectra were recorded on a Bruker Avance 400 spectrometer at 79.49 

MHz, using 2.5 µs (equivalent to 40°) radiofrequency pulses, a recycle delay of 12 s and a 

spinning rate of 5.5 kHz. 

2.6. Preparation of nanocomposite films 

The nanocomposites based on silane-modified MCM-41 and HDPE were processed as 

films (thickness ca. 250-300 µm) by compression molding in a Collin press between hot plates 

at 170 ºC using a pressure of 2 MPa, for 4 min, and then cooled down to room temperature with 

circulating water. These films have been named as followed: HDPE/MCM41-VS-xh and 

HDPE/MCM41-VS-xs for those that use chloro(dimethyl)vinylsilane for functionalizing the 

MCM-41 particles and HDPE/MCM41-OES-xh and HDPE/MCM41-OES-xs for those that 

incorporate trimethoxy(7-octen-1-yl)silane. X is defined as MCM-41 wt. % content estimated 

by TGA and h an s are referred to polymerization performed under homogenous conditions or 

with supported catalyst, respectively. 

2.7. Characterization of the nanocomposites 

Scanning electron micrographs (SEM) were obtained on a JEOL JSM-7001F 

equipment. Transmission electron micrographs (TEM) images were obtained in a Hitachi 

H8100 equipment. Parallel cuts were prepared at -100 ºC for the TEM analysis of PE 

nanocomposites films from different samples using a LEICA EM FC6 cryo-camera in order to 

attain thin sections (80 nm) of the film surface by means of the LEICA EM UC6 

ultramicrotome. Those cuts were picked up on cooper grids. 
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Wide-angle X-ray diffraction, WAXS, patterns used for characterizing the 

nanocomposites were recorded in the reflection mode by using a Bruker D8 Advance 

diffractometer provided with a PSD Vantec detector (from Bruker, Madison, Wisconsin). Cu Kα 

radiation (λ = 0.1542 nm) was used, operating at 40 kV and 40 mA. The parallel beam optics 

was adjusted by a parabolic Göbel mirror with horizontal grazing incidence Soller slit of 0.12° 

and LiF monochromator. The equipment was calibrated with different standards. A step 

scanning mode was employed for the detector. The diffraction scans were collected within the 

range of 2θ = 1–43°, with a 2θ step of 0.024° and 0.2 s per step.  

Estimation of crystallinity (fc) was carried out at room temperature from WAXS profile 

deconvolution into the crystalline diffractions and the amorphous component using a fitting 

program. The error in the crystallinity determinations is estimated to be ± 4 units.  

Calorimetric analyses were carried out in a TA Instruments Q100 calorimeter connected 

to a cooling system and calibrated with different standards. The sample weights ranged from 5 

to 7.5 mg. A temperature interval from -40 ºC to 160 ºC has been studied and the used heating 

rate was 10 ºC/min. For crystallinity determinations, a value of 290 J/g has been taken as the 

enthalpy of fusion of a perfectly crystalline material [20,21].  

The degradation processes of the resulting nanocomposites were estimated by 

thermogravimetry using a TA Instruments TGA Q500 equipment working under inert and 

oxidant atmospheres. The equipment was calibrated according to standard protocols. The 

sample weights ranged from 4 to 6 mg, and the heating rate was 10 ºC/min. 

Viscoelastic properties were measured in a Polymer Laboratories MK II dynamic 

mechanical thermal analyzer working in a tensile mode. The complex modulus and the loss 

tangent for each sample were determined at 1, 3, 10 and 30 Hz over a temperature range from -

150 to 130 ºC, at a heating rate of 1.5 ºC/min. 

Depth Sensing Indentation, DSI, experiments were performed at room temperature with 

a Shimadzu tester (model DUH211S) equipped with a Berkovich type diamond indenter. The 

experimental protocol consisted in the application of a load of 10 mN at a loading speed of 1.46 

mN/s; the maintenance of this constant load for 5 s and, afterward, load was released with the 
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unloading speed equal than the one used along the loading stage. Finally, indentation depth was 

registered additionally for 5 s after reaching the minimum load (0.1 mN). Martens hardness, 

HMs, and indentation hardness, Hit, were calculated according to Oliver-Pharr method [22]. 

These hardness values are related to the ratio of the maximum load to the contact area under 

load and after releasing the indentor, respectively. Consequently, HMs is related to elastic, 

viscoelastic and permanent strains whereas Hit only depends on viscoelastic and plastic strains. 

3. Results and discussion 

3.1. Characterization of neat and functionalized MCM-41 particles 

 The grafting of the two organosilane coupling agents on the mesoporous silicas was 

monitored by 29Si MAS NMR. The spectrum of neat MCM-41, depicted in Figure 1, displays 

two main resonance bands at -110 and -101 ppm, assigned to silicon sites Q4 (*Si(OSi)4) and Q3 

(HO*Si(OSi)3) and a small shoulder at -92 ppm corresponding to a Q2 environment 

((HO)2
*Si(OSi)2) [23]. The Q3 and Q2 sites correspond to isolated and geminal silanol groups 

respectively. The spectra of post-synthesis functionalized materials confirm the grafting of the 

silanes onto the MCM-41 surface through the appearance of new peaks that may be assigned to 

organosiloxane units: at 3 ppm associated with the silicon attached to VS groups [24]; and at  

-47 and -56 ppm corresponding to T1 (RSi(OSi)(OR’)2, with R’= CH3 or H) and T2 

(RSi(OSi)2(OR’)) sites for the OES modifier (Figure 1). For this latter case, the relative intensity 

of T1 and T2 peaks suggests that in average OES binds to 1.5 surface silanols. 

 The modification of MCM-41 particles with both silanes has been also observed by 

FTIR. Figure S1 of Supporting Information (SI) shows the FTIR spectra obtained for the neat 

mesoporous silica materials, MCM-41 (a); the post-synthesis decorated MCM-41 reacted with 

VS, MCM-41-VS (b); and the post-synthesis decorated MCM-41 reacted with OES, MCM-41-

OES (c). The spectra were also normalized using the Si-O-Si overtones at about 1990 and 1875 

cm-1 for a better comparison [25]. The spectrum of the neat MCM-41 support shows the typical 

features exhibited by mesoporous silicas with bands at about 3740 and 3500 cm-1 associated 

with OH stretching of isolated and interacting silanol groups [26], respectively, and bands at 

2200-1600 cm-1, corresponding to combination and overtone bands of Si-O network bonds. The 
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absence of physisorbed water can be easily assessed by the lack of H2O bending mode 

frequency, normally observed at 1635 cm-1 (results not shown). After MCM-41 decoration with 

VS, the band at 3740 cm-1 ascribed to the surface isolated silanol groups almost disappears and 

new bands at 3057, 2966 and 1596 cm-1 are discernable. These bands might be ascribed to C-H 

stretching modes in double bonds and CH3 groups and to C=C stretching mode, respectively. 

The spectrum of MCM-41 modified with OES also displays the complete disappearance of the 

band at 3740 cm-1 and the emergence of new bands at 3080, 2927, 2858 and 1641 cm-1. These 

frequencies can be attributed to C-H stretching modes in double bonds and CH2 groups and to 

C=C stretching mode, respectively. Furthermore, the disappearance of the Si-OH band confirms 

the covalent grafting of OES at the surface of the mesoporous support. Also, a shoulder at about 

2970-2960 cm-1 can be seen, suggesting an incomplete hydrolysis of metoxy groups. This result 

is compatible with those attained by NMR measurements.  

Figure S2 of SI depicts the N2 adsorption isotherms obtained for either the neat or 

functionalized MCM-41 particles and Table 1 summarizes the textural parameters achieved 

from these experimental isotherms and the thermogravimetric data. MCM-41 particles exhibit a 

N2 adsorption isotherm typical of mesoporous silicas (type IV), with the presence of a well 

defined pore filling step within a narrow range of p/p0 (capillary condensation), demonstrating 

the fine organization of cylindrical pores of uniform size. Their post-synthesis modification with 

VS and OES silanes reduces the amount of N2 adsorbed, as expected, but does not modify the 

isotherm type. Then, a decrease of the textural parameters of the support, SBET, Vp, Aext and Dp, 

is observed as result of MCM-41 functionalization. This reduction is more significant if OES is 

the interfacial agent used. 

3.2. Polymerization activity 

Incorporation of nanofillers into the polymerization media (i.e. direct contact with the 

cocatalyst (MAO) and the homogeneous metallocene catalyst in the reactor) might be a suitable 

approach for the obtainment of PE based nanocomposites by in situ polymerization. 

Polymerization activity is not expected to change significantly in absence of deactivating 

processes induced by the filler. Zapata et al. [27] have even recently referred to a slight increase 
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of ethylene polymerization activity when silica nanospheres are added together with the 

catalytic system directly in the polymerization reactor. Nevertheless, the addition under 

homogenous conditions of undecenoic acid as comonomeric unit to improve properties at 

polymer/MCM-41 interfaces has an opposite effect depending on its amount in the feed [17]: 

regular catalytic activity is achieved at contents low enough, while an important reduction is 

observed if undecenoic acid amount is raised in the feed. This behavior is due to the 

deactivating character of the carboxylic groups [28] and the incomplete protection that 

triisobutylaluminum provides to those deactivating groups. 

Table 2 reports high activity values for the ethylene polymerization performed with 

homogeneous Cp2ZrCl2 catalyst and using silane-decorated MCM-41 microparticles only as 

fillers. Thus, polymerization activity of ethylene is not significantly modified if MCM-41 

particles are functionalized with silanes, these interfacial agents resulting, from this standpoint, 

more convenient than the use of other ones like undecenoic acid. Nevertheless, a significant 

decrease of the activity is observed upon Cp2ZrCl2 immobilization. This is a common feature in 

supported catalytic systems, especially for those obtained from direct impregnation methods. It 

is generally accepted in these cases that metallocenes are grafted on silica surface by elimination 

of chloride ligand with hydrogen atoms from silanol groups on the support, generating both 

monodentate and bidentate surface species. After MAO addition, monodentate µ-oxo surface 

species may be converted to active cationic sites for the polymerization of α-olefins [29-31]. 

Similar immobilization/activation processes are accepted for mesoporous silicas [10,32]. On the 

other hand, bidentate surface species (resulting from elimination of chloride ligand with 

hydrogen atoms of vicinal silanol groups) and binuclear species (resulting from bimolecular 

reaction between neighboring active centers) are inactive. The ratio between active and inactive 

species is dependent on surface density and distribution of OH groups. Figure S3 of SI 

represents the kinetic profiles obtained from the polymerization runs performed under 

heterogeneous conditions. 

As it may be deduced from these plots, the average polymerization activity of the 

catalytic systems supported on MCM-41 modified with silanes is higher than the value obtained 
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for the supported catalyst on neat MCM-41 (580 kg PE/molZr.h). This behavior is in agreement 

with the reduction of the number of vicinal silanol groups that may deactivate the catalyst by the 

formation of bidentate species [33]. It is also clearly seen that activity reaches a maximum 

value, which is maintained along time on pristine MCM-41 and functionalized MCM-41-OES. 

A decay of catalytic activity behind the maximum is noticed if catalyst is supported on MCM-

41-VS. This observation suggests a lower stability of the active species formed when MCM-41-

VS particles are used 

3.3. Structural and Morphological Characterization of Resulting Hybrids 

Figure 2 shows the diffraction profiles at middle angle, MAXS, and wide angle, 

WAXS, at room temperature for different nanocomposites. It should be indicated that all of 

them have not been represented at middle angle (left plot) whereas the WAXS profiles have 

been shifted for clarity (right plot). It is undoubtedly noticeable from the left picture that the 

MCM-41 microparticles exhibits their characteristic mesoporous hexagonally arranged structure 

that consists of a strong reflection at around 2.2º and two weak reflections at 3.8º and 4.4º, 

which correspond to (100), (110) and (210) diffraction planes of MCM-41, respectively 

(obviously, HDPE homopolymer does not display any signal in the MAXS region). The 

different silane functionalized nanocomposites present these diffractions of MCM-41, indicating 

that the well-ordered long-range structure is retained either if polymerization takes place under 

homogeneous (method A) or heterogeneous (approach B) conditions. Differences in intensity of 

the main (100) diffraction are dependent on the final MCM-41 content in the nanocomposite.  

More details on the morphological characteristics exhibited by these materials can be 

obtained from TEM (see Figure 3) and SEM micrographs (Figure S4 of supporting 

information). These images provide additional knowledge about either particle distribution or 

size of agglomerates of the MCM-41 microparticles within the polyethylenic matrix. At an 

approximately similar VS silane content, it seems clear through TEM images that 

polymerization from support/filler surface seems to hamper agglomeration and promote particle 

filler dispersion. Thus, aggregates and particle distribution are of smaller size and more 

homogeneous, respectively, as deduced if the HDPE/MCM41-VS-8h and HDPE/MCM41-VS-
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9s specimens are compared. Good morphological features seem also to be observed in the 

supported HDPE/MCM41-OES-7s sample. Nevertheless, conclusions are somehow different if 

images are taken with lower magnification, i.e., through SEM pictures. The HDPE/MCM41-

VS-9s material seems again to be better than HDPE/MCM41-VS-8h. However, two clear zones 

are distinguished in the HDPE/MCM41-OES-7s material: some regions with a high content of 

inorganic components and other ones where MCM-41 is rather absent. Accordingly, 

heterogeneity in this HDPE/MCM41-OES-7s seems to be globally superior to that exhibited by 

the other two samples. The formation of these agglomerates might be favored because of the 

development of crosslinkings. These can take place through the OES double bonds under the 

applied experimental conditions (heated under reflux for 24 h with stirring). 

Moreover, a fibrous-like structure, randomly disseminated, is markedly seen in Figure 3 

for all of the materials as well as the existence of some aggregates of MCM-41 with different 

sizes. These tubular-like arrangements [34] are generated by the MCM-41 hexagonal long 

channels, these tubules being coated by polyethylene macrochains. Then, polyethylene based 

macromolecules would be located either within the MCM-41 long channels or wrapping them 

outside. 

Coming back to Figure 2, its right plot represents the X ray profiles at wide angle 

region, WAXS, for the distinct silane decorated hybrids. At room temperature, all of them show 

the orthorhombic lattice common in polyethylene and derivatives, characterized by the two 

main (110) and (200) diffractions [35,36]. It is clear from the WAXS profiles that location of 

these two primary diffractions is rather unvarying for the different samples and, consequently, 

dimensions of crystal lattice remain practically unaffected in these diffraction planes by 

incorporation of silane-functionalized MCM-41 microparticles. A decrease in diffraction 

intensity is, however, observed when hybrids are compared with HDPE, this effect being more 

evident for composites with the highest MCM-41 contents (i.e., HDPE/MCM41-VS-23h, 

HDPE/MCM41-VS-28s and HDPE/MCM41-OES-25s). This reduction should be associated, at 

first glance, with a diminishment in crystallinity as function of MCM-41 content. 
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The degree of crystallinity can be quantified from deconvolution of the different WAXS 

profiles into the crystalline diffractions and amorphous halo (as commented in the Experimental 

Section). However, the WAXS profile of pure MCM-41 shows a broad diffraction centered at 

around 2θ = 23° (see upper insert in right plot of Figure 2), so that the simple deconvolution 

into crystalline diffractions and amorphous counterpart is leading to underestimation of the real 

polyethylene crystallinity. Accordingly, the subtraction of the actual MCM-41 amount present 

at a specific material has to be performed previous the deconvolution in the HDPE pattern. Once 

the MCM-41 contribution has been kept out, the crystallinity values are determined, being 

reported in Table 3. A noticeable decrease of the WAXS crystallinity is observed when MCM-

41 is present, especially evident for those hybrids with the highest MCM-41 contents.  

Figure 4 shows the normalized DSC curves during the first melting run for all of the 

specimens, i.e., those calorimetric traces account the actual amount of HDPE in the composites. 

Several characteristics can be deduced, as follows. The first one is correlated to the noticeable 

presence of a secondary endothermic process in the different hybrids (no signal of it is seen in 

HDPE) at around 75-80 ºC as well as the main melting peak located at about 133 ºC. This minor 

melting process is considerable more important as MCM-41 content increases in the 

nanocomposite, as visibly deduced from the inset. It is obvious that the process at lower 

temperatures involves the melting of crystallites with significantly smaller size. These thinner 

crystals are probably the ones developed from the polymeric chains that are included into the 

MCM-41 channels and are not able to grow further within those channels because of 

confinement effects. Consequently, its intensity increases as MCM-41 does since the amount of 

polymeric matrix becomes greater within these channels. 

The melting enthalpies (and DSC crystallinities) of these hybrids show two interesting 

features. Firstly, the total crystallinity determined from these initial DSC runs is the same for the 

different hybrids, as listed in Table 3 and depicted in Figure 5 (except for the specimen 

HDPE/MCM41-OES-7s that shows an anomalous low degree of crystallinity). This stands in 

contrast to the significant decrease observed in the WAXS crystallinity. Second, if the enthalpy 

involved in the secondary process is excluded, then a rather similar variation is obtained 
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between the crystallinity deduced from the main melting peak at around 133 °C and that 

observed from X-ray crystallinity (fc
WAXS) estimation, as clearly seen in Figure 5. Accordingly, 

it can be assumed that these very small entities that melt at around 70-85 ºC lead to rather wide 

diffraction peaks that are not well accounted for in the X-ray crystallinity, fc
WAXS. This fact 

together with the constancy of total crystallinity determined from first DSC runs was 

preliminary identified in the nanocomposites that incorporated undecenoic acid as interfacial 

agent [17]. Once the enthalpy corresponding to that minor melting process is subtracted, trends 

observed for both techniques are rather analogous (see Figure 5), these results now confirming 

those previous assumptions. 

It seems to be deduced, therefore, that the enthalpy arising from the PE chains confined 

inside the MCM41 channels (see fc
DSC

CONFINEMENT PEAK in Figure 5 and Table 3) increases more 

or less linearly with the total MCM-41 content, up to around a 10% of total crystallinity for 

sample HDPE/MCM41-VS-28s, although a certain dependence on the type of silane seems to 

be observed (see below). 

The assumption of rather wide diffraction peaks can be ascertained from a 

straightforward determination of the expected width of those peaks by employing the Scherrer 

equation [37]. Thus, the width at half maximum of the diffractions for a crystal length of 2 nm 

(on the order of the pore diameters) should be around 4 degrees in 2θ. Such high values will in 

fact prevent the observation of real diffraction peaks. 

Regarding the melting temperatures of such very thin crystals, some estimation can be 

also made by means of the Gibbs-Thomson equation. Most usually, a simplified version of that 

equation is employed [38-40] when dealing with lamellar crystals of finite size along the 

macromolecular chain but with very large sizes for the lateral dimension. In the present case, 

however, a more general equation is needed [41,42] since the macromolecules confined in the 

channels of MCM-41 are supposed to have rather reduced lateral dimensions, similar to the 

diameter of the pores. 

Such equation relates the observed melting temperature, Tm, with the dimensions of the 

crystal as follows:  
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where Tm
0 is the equilibrium melting temperature of the crystal with infinite thickness, L1, L2 

and L3 are the three dimensions of the crystallite and γ1, γ2 and γ3, the corresponding surface free 

energies in those directions, while ∆hf
0 is the heat of fusion per unit volume. Somewhat different 

values are given in the literature for either the surface free energies or for Tm
0. Nevertheless, by 

using the following values: Tm
0 = 418.7 K, γ1 = 90 erg/cm2, γ2 = γ3 = 14 erg/cm2, and ∆hf

0 = 280 

J/cm3 and assuming that L1 = 10 nm, then the extreme values of the endotherm assigned to the 

confined crystals, which are 82 and 74 °C (see inset in Figure 4), are corresponding to values of 

L2 = L3 = 2.3 and 1.9 nm, respectively. The results amount to 1.7 and 1.5 nm if L1 is assumed to 

be 20 nm. In any case, these values are very similar to the average pore diameters for MCM-41-

VS and MCM-41-OES reported in Table 1. 

It is also interesting to remark the significant reduction in crystallinity of this 

"secondary" process after cooling from the molten state and subsequent heating scans (second 

melting) in all the specimens. This fact is clearly observed in Figure S5 for the HDPE/MCM41-

VS-28s and HDPE/MCM41-OES-25s samples, with the highest MCM-41 contents. This feature 

suggests that there is a delay in the development of those ordered entities within MCM-41 

channels in the nanocomposites, which cannot be generated in the same extent and size during 

the experimental time because of confinement effects, as deduced from the smaller area and the 

shift of that secondary peak to lower temperatures. Nevertheless, crystallites outside the 

channels present a size higher than the one exhibited by those crystals melting during the first 

heating run, as demonstrated by the slight increase of their melting temperatures (see Tm
F2 

values in Table 3). This shift is associated with the smaller rate of crystallization applied during 

DSC experiments (10 ºC/min) compared with that fast cooling imposed along the initial 

processing (80-100 ºC/min), the former one allowing a large crystal perfection. 

Another characteristic that can be derived from Figure 4 (see the inset) is the apparent 

dependence of the intensity of this confinement peak on the type of silane used for the 
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decoration of the MCM-41. It seems evident when comparing HDPE/MCM41-VS-23h or 

HDPE/MCM41-VS-28s and HDPE/MCM41-OES-25s specimens that more polyethylene chains 

are able to go within the channels and, then, to crystallize if MCM-41 microparticles are post-

modified with VS instead of OES. This fact can be ascribed to the different parameters of these 

mesoporous MCM-41 particles functionalized with those two silanes. The higher steric 

hindrance associated with OES leads to particles with lower specific surface area and specific 

pore volume as well as smaller external area and a smaller average pore diameter (see table 1), 

turning out more difficult for polyethylene chains to polymerize within the channels. 

Nevertheless, intensity of this confinement peak seems to be rather independent of the in situ 

polymerization taking place under homogeneous or heterogeneous conditions. 

This thermal behavior here observed is somehow different to that previously found in 

the literature for similar nanocomposites [43]. The reason for such variations may be due to the 

fact that those nanocomposites were analyzed from the as-prepared reactor powders, i.e., the 

sample obtained just after polymerization, which basically consists in extended-chain 

nanofibrils [21,44] whereas the hybrids here analyzed have been further processed as films, and 

the majority conformation is not in the form of extended-chain but as random coil. 

3.4. Thermal Stability of Resulting Hybrids 

 The knowledge of the decomposition behavior of these nanocomposites is required for 

their further applicability since MCM-41 is, sometimes, used as catalyst of degradation 

processes [45] and these materials were exposed to temperature during film preparation by melt 

processing. It is, then, mandatory to evaluate if that processing from the molten state affects or 

not the resulting thermal stability or if decomposition has been initiated. Melt processing has 

been chosen to prepare films because it is a cost-effective and an environmentally-friendly 

method, which avoids the use of any solvent. Furthermore, the amount of inorganic solids can 

also be estimated from the thermogravimetric curves. The results show that content determined 

at a given specimen is rather independent of the environment used. The average values obtained 

from inert and oxidative conditions are listed in Tables 2 and 3. 
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 Figure 6 shows the thermogravimetry curves under air and inert environments for the 

different hybrids. Under inert conditions (right plots), a single primary stage of decomposition is 

observed in the temperature range from 200 to 650 ºC for all specimens. Thermal 

decomposition of neat polyethylene has been reported to occur under these conditions through a 

random scission mechanism that turns out in the fragmentation of original polymeric chain into 

fragments of varying length. The mechanism describes a random generation of free radicals 

along the polymer backbone, followed by the scission of the molecule that results in the 

formation of a molecule with an unsaturated end and another with a terminal free radical. 

Subsequent hydrogen chain transfer reactions transform the radical fragments into straight chain 

dienes, alkenes and alkanes [46]. 

 On the contrary, several different degradation processes are noticeable in the different 

hybrids and the homopolymer, at identical temperature interval, when air is the environment 

used (represented in the left plots of Figure 6). It is well known that the initial reaction of the 

polyethylene thermal oxidation is the formation of alkyl radicals from polymeric chains. And 

the next stage is the reaction of alkyl radicals with oxygen to form hydroperoxides, which can 

decompose to alkoxyl radicals. Then, the alkoxyl radicals abstract hydrogen from the chain and 

other alkyl radical forms. Finally, various carbonyl species are generated. 

 The presence of MCM-41 microparticles decorated with silanes in the nanocomposites 

has markedly an effect of degradation promoter under both atmospheres used. Thus, the 

beginning of decomposition takes place in the different hybrids at temperatures lower than in 

the HDPE homopolymer, as listed in Table 4 and represented in Figure S6 of Supporting 

Information for the T5% and T20% mass losses. As degradation is further progressing (T50%), 

species more stable than those in the HDPE are, however, generated in some of the 

nanocomposites with MCM-41 contents lower than 10 wt.%.  

 In addition, and for a given silane, those nanocomposites prepared with the supported 

catalyst degrade in an inert environment more easily than those obtained using the catalyst in a 

homogeneous medium, because some traces of catalyst might be probably trapped within 

MCM-41 channels, favoring degradation. Furthermore, OES provides higher stability than VS 
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under inert conditions. These two last features are not observed under air condition probably 

because of the great complexity of processes involved in oxygen presence. 

3.5. Mechanical Behavior of Resulting Hybrids 

Figure 7 shows the variation of the storage and loss moduli as well as of the loss tangent 

for the HDPE and the different nanocomposites, from DMTA measurements. In the two upper 

plots, an increase of the storage modulus is observed when MCM-41 microparticles are 

incorporated if compared with the modulus exhibited by the neat HDPE. The highest values are 

presented by the two nanocomposites with the largest MCM-41 contents, i.e., HDPE/MCM41-

VS-28s and HDPE/MCM41-OES-25s. This increase in stiffness observed in the 

nanocomposites should be mainly ascribed to the inherent reinforcement effect of the 

mesoporous filler since DSC crystallinity values (estimated from films during their first heating 

run) are rather similar in the different hybrids with exception of the HDPE/MCM41-OES-7s. 

Furthermore, it is noticeable that this improvement in rigidity with MCM-41 content is more 

important above room temperature, that is, when the mobility within the olefinic polymer chains 

increases, as can be clearly seen in Figure 7. A similar mechanical response has been also found 

from Depth Sensing Indentation measurements and the corresponding indentation hardness, Hit, 

values obtained (see Table 5). Hardness of a material can be defined as a measurement of the 

resistance to a permanent deformation or damage. The equipment used for this study is able to 

perform and monitor loading-maintenance-unloading processes, as seen in Figure 8 for all of the 

hybrids. The two nanocomposites with the largest MCM-41 microparticle contents, i.e., 

HDPE/MCM41-VS-28s and HDPE/MCM41-OES-25s, are the hardest materials, and, 

consequently, the indenter cannot penetrate too much in its surface. The HDPE/MCM41-VS-

23h is slightly softer than those just mentioned, and thus indenter penetration is slightly 

enlarged. As MCM-41 composition is reduced, materials become significantly more deformable 

and indenter goes deeper inside. There is not too much difference between these low MCM-41 

content samples, with the exception of the HDPE/MCM41-OES-7s that is the softest one, due 

probably to its lower crystallinity. Accordingly, the two parameters that mainly trigger hardness, 

in particular, and the mechanical response, in general, are MCM-41 content and HDPE 
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crystallinity. The influence of crystallinity in hardness values has been also found in other 

olefinic based polymers [47-50]. Effect of other morphological features, as particle 

agglomeration and dispersion heterogeneity among others, does not show straightforward trends 

on mechanical response and the obtained information may be sometimes contradictory. As well, 

an easy correlation of rigidity on the preparation approach and on the silane type used for 

MCM-41 modification cannot be unambiguously established, probably because analogous 

polymer-filler interactions are developed within the hybrids (in agreement with data shown in 

an earlier article [16]) and, then, similar effects turn out in the compatibilization of the two 

different phases. It can be only said that at the highest MCM-41 contents, nanocomposites 

prepared using the catalyst supported on the mesoporous microparticles seem to exhibit larger 

stiffness.  For those highest contents a three-fold increase both on storage modulus and hardness 

may be attained under specific conditions (samples HDPE/MCM41-VS-28s). 

In relation to relaxation processes, the tan δ and E′′ representations in Figure 7 display 

the existence of two main processes, labeled as γ and α in order of increasing temperatures. 

Intensity and location are slightly dependent on MCM-41 content, as noticed from tan δ plot. 

The other common relaxation, named as β and located between the γ and the α processes in low 

density polyethylene, linear low density polyethylene and ethylene copolymers [7,9,51,52] is 

not clearly observed for these specimens. The crystallinity of these samples is relatively high 

and, therefore, that relaxation process is almost absent and overlapped with the α mechanism, 

corroborating similar features found in other HDPE samples [53].  

The γ relaxation in polyethylene was firstly attributed to crankshaft movements of 

polymethylenic chains [54]. However, there is no clear consensus regarding the details of the 

underlying motional process [55]. This type of motion requires chains within the amorphous 

phase containing sequences of three or more methylenic units. Figure 7 and data in Table 5 

show that the location of γ loss modulus peak is not significantly affected by the MCM-41 

content, but its intensity decreases since there is less polyethylene that contributes to this 

relaxation as MCM-41 microparticles amount increases.  
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 The relaxation that appears at higher temperature, α relaxation, has been associated with 

vibrational and reorientational motions within the crystallites [56,57]. At the highest 

temperatures, the melting of the crystallites is overlapped with this relaxation process. As 

discussed for the motions within the amorphous regions, the mobility occurring in the crystals 

also becomes more restricted as the MCM-41 content increases and, consequently, the location 

of the α relaxation is shifted to higher temperatures and its broadness is enlarged involving wide 

relaxation time distributions, as clearly seen from E′′ representations (lower plots in Figure 7). 

Furthermore, its intensity is reduced, more clearly noticeable from the tan δ plot (in fact, this is 

the independent experimental parameter since E′′ is estimated from storage modulus, E′, and tan 

δ values).  

Additional information on the mechanical performance of these hybrid materials can be 

attained from these loss magnitudes since they are related to viscoelastic energy dissipation, 

which is expected to make a significant contribution in the impact energy because the time scale 

involved in impact deformation is of comparable order of magnitude as the relaxation time of 

viscoelastic processes. Therefore, correlation of impact strength with dynamic mechanical 

behavior has been previously reported [58-62]. The area under the loss tangent curve provides 

an estimation of the impact strength, although it is not a direct measurement. In the present 

investigation, the region integrated has been that from -50 to 125 ºC and the values obtained are 

listed in Table 5. As expected, a decrease of area is observed, indicating that the 

nanocomposites are able to absorb less energy before breaking as MCM-41 content increases. 

However, it is noticeable that this reduction is much smaller than the increase in elastic 

modulus, fact that seems to point out that a favorable compromise between these two opposite 

mechanical characteristics is reached. 

4. Conclusions 

New materials based on commodity polyethylene and MCM-41 microparticles, 

synthesized by several approaches using silanes as interfacial agents, have been prepared in 

order to improve their ultimate mechanical properties through increasing interfacial contact 

between the two components. Concerning the catalytic aspects, the modification of MCM-41 
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with silane was found to lead to a beneficial effect in terms of the polymerization activity of the 

supported catalyst when compared to the analogous supported system on pristine MCM-41. 

Moreover, changes on active species stability seem to occur when changing from MCM-41-

OES to MCM-41-VS supports. The latter one seems to give rise to less stable species. 

Regarding dispersion of filler particles within polyethylene-based matrix, it appears that 

aggregates are of smaller size and distributed more homogeneously in the hybrids where MCM-

41 acts as catalyst carrier as well as filler. 

Independently of the preparation methodology used, the PE nanocomposites based on 

MCM-41 microparticles decorated with silanes maintain the well-ordered initial long-range 

features of those mesoporous materials. This fact indicates that the polyethylene macrochains 

within the pores and channels do not significantly alter the original MCM-41 structure observed 

at the MAXS region.  

The existence of a secondary endothermic process in the nanocomposites at around 80 

ºC points out the presence of crystallites with significantly smaller size in addition to those 

thicker ones that melt at around 130 ºC. The small endothermic transition found in the 

nanocomposites has been ascribed to the melting of the polymeric chains located within 

channels that make up the MCM-41 microparticles. A delay in the development of those 

ordered entities is observed for the highest contents, probably due to confinement effects.  

Decomposition process begins at lower temperatures in the hybrids compared with that 

exhibited by neat HDPE. That shift is more noticeable at the highest MCM-41 contents, 

independently of the atmosphere used for the measurements. 

The type of the silane used for MCM-41 modification does not affect significantly 

rigidity of the different materials suggesting that the ability of the tested silanes to promote the 

adhesion and compatibility between the two different phases is similar. A rigidity enhancement 

is clearly seen from the increase of both the storage modulus and hardness values. A three-fold 

increase on these magnitudes was observed for the two nanocomposites prepared under 

supported conditions and containing the highest contents of MCM-41. Moreover, a mobility 
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reduction is deduced from the decrease of relaxation intensities in those hybrids with around 25 

wt.% MCM-41 content and specially for those obtained from the supported catalyst. 

Then, ultimate mechanical performance improves with MCM-41 incorporation without 

varying the final processing temperature.  

Acknowledgements 

Funding through the Fundação para a Ciência e a Tecnologia (FCT) within the Projecto 

UID/QUI/00100/2013 and financial support of Ministerio de Economía y Competitividad, 

MINECO-Spain (MAT2013-47972-C2-1-P and MAT2013-47972-C2-2-P projects) is 

acknowledged. A. Bento thanks to Fundação para a Ciência e a Tecnologia (FCT) for his PhD 

scholarship (ref. SFRH/BD/47212/2008). Kind donations of toluene by Petrogal and of MAO 

by Albemarle are also acknowledged.  

References 

1. A.M. Diez-Pascual, M. Naffakh, C. Marco, G. Ellis, M.A. Gomez-Fatou, Prog. Mater. Sci. 
57 (2012) 1106.  

2. H.W. Ha, A. Choudhury, T. Kamal, D. H.Kim, S.Y. Park, ACS Appl. Mater. Inter. 4 (2012) 
4623. 

3. (a) J. Arranz-Andrés, M.L. Cerrada, Sci.Adv. Mater. 5 (2013) 1; (b) J. Arranz-Andrés, E. 
Pérez, M.L. Cerrada, Sci.Adv. Mater. 5 (2013) 1524.  

4. M.L. Cerrada, C. Serrano, M. Sánchez-Chaves, M. Fernández-García, F. Fernández-Martín, 
A. de Andrés, R.J. Jiménez Riobóo, A. Kubacka, M. Ferrer, M. Fernández-García, Adv. 
Funct. Mater. 18 (2008) 1949  

5. A. Kubacka, M.L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer, M. Fernández-
Garcia, J. Phys. Chem. C 113 (2009) 9182.  

6. A. Kubacka, M. Ferrer, M. Fernández-García, C. Serrano, M.L. Cerrada, M. Fernández-
García, Appl. Catal. B-Environ. 104 (2011) 346.  

7. J. Fox, J.J. Wie, B.W.Greenland, S. Burattini, W. Hayes, H.M. Colquhoun, M.E. Mackay, 
S.J. Rowan, J. Am. Chem. Soc. 134 (2012) 5362.  

8. M.L. Cerrada, R. Benavente, E. Pérez, J. Moniz-Santos, M.R. Ribeiro, Polymer 42 (2001) 
7197.  

9. M.L. Cerrada, R. Benavente, E. Pérez, Macromol. Chem.  Phys. 203 (2002) 718.  
10. J.M. Campos, J.P. Lourenço, H. Cramail, M.R. Ribeiro, Prog. Polym. Sci. 37 (2012) 1764. 
11. K. Kageyama, J. Tamazawa, T. Aida, Science 285 (1999), 2113. 
12. Z.B. Ye, S.P. Zhu, W.J. Wang, H. Alsyouri, Y.S. Lin, J. Polym. Sci. Polym. Phys. 41 (2003) 

2433. 
13. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. 

Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. 
Chem. Soc. 114 (1992) 10834. 

14. M.L. Cerrada, E. Perez, J.P. Lourenco, J.M. Campos, M.R. Ribeiro, Micropor. Mesopor. 
Mat. 130 (2010) 215. 

15. J.M. Campos, J.P. Lourenço, E. Perez, M.L. Cerrada, M.R. Ribeiro, J. Nanosci. Nanotechno. 
9 (2009) 3966. 

16. A. Bento, J.P. Lourenço, A. Fernandes, M.R. Ribeiro, J. Arranz-Andrés, V. Lorenzo, M.L. 
Cerrada, J. Membr. Sci. 415–416 (2012) 702.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 23

17. María L. Cerrada, Ernesto Pérez, João P. Lourenço, Artur Bento, M. Rosário Ribeiro, 
Polymer 54 (2013) 2611  

18. O.H. Lin, H.M. Akil, Z. A.M. Ishak, Polym. Comp. 32 (2011) 1568. 
19. J.P. Lourenco, A. Fernandes, C. Henriques, M.F. Ribeiro, Micropor. Mesopor. Mat. 94 

(2006) 56. 
20. F.A. Quinn, L. Mandelkern, J.Am. Chem. Soc. 80 (1958) 3178. 
21. B. Wunderlich, Macromol. Physics. New York: Academic Press, 1980. 
22. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564. 
23. D.W. Sindorf, G.E. Maciel, J. Am. Chem. Soc. 103 (1981) 4263. 
24. X.S. Zhao, G.Q. Lu, A.K. Whittaker, G.J. Millar, H.Y. Zhu, J. Phys. Chem. B 101 (1997) 

6525. 
25. A. Jentys, K. Kleestorfer, H. Vinek, Micropor. Mesopor. Mat. 27 (1999) 321. 
26. J. Chen, Q. Li, R. Xu, F. Xiao, Angew. Chem. Int. Edit. 34 (1996) 2694. 
27. P. A. Zapata, R. Quijada, I. Lieberwirth, R. Benavente, Macromol. React. Eng. 5 (2011) 294. 
28. M.L. Cerrada, R. Benavente, E. Pérez, J. Moniz-Santos, J.M. Campos, M.R. Ribeiro, 

Macromol. Chem. Phys. 208 (2007) 841. 
29. W.C. Finch, R.D. Gillespie, D. Hedden, T.J. Marks, J. Am. Chem. Soc. 112 (1990) 6221. 
30. M. Jezequel, V. Dufaud, M.J. Ruiz-Garcia, F. Carrillo-Hermosilla, U. Neugebauer, G.P. 

Niccolai, F. Lefebvre, F. Bayard, J. Corker, S. Fiddy, J. Evans, J.P. Broyer, J. Malinge, J.M. 
Basset, J. Am. Chem. Soc. 123 (2001) 3520. 

31. N. Millot, S. Soignier, C.C. Santini, A. Baudouin, J. M. Basse, J. Am. Chem. Soc. 128 
(2006,) 9361. 

32. C. Alonso-Moreno, D. Perez-Quintanilla, D. Polo-Ceron, S. Prashar, I. Sierra, I. del Hierro, 
M. Fajardo, J. Mol. Catal. A−Chem. 304 (2009) 107. 

33. J.H.Z. dos Santos, P.P. Greco, F.C. Stedile, J. Dupont, J. Mol. Catal. A−Chem. 154 (2000) 
103. 

34. A. Chenite, Y. Le Pag, A. Sayari, Chem. Mater. 7 (1995) 1015. 
35. K. Shirayam, H. Watabe, S. Kita, Makromol. Chem.  151 (1972) 97. 
36. C.W. Bunn, Transactions of the Faraday Society 40 (1944) 23. 
37. L.E. Alexander, X-Ray Diffraction Methods in Polymer Science, Wiley, New York, 1969, p. 

335. 
38. B. Wunderlich, 'Macromolecular Physics', Vol. 3, 'Crystal Melting', Academic Press, New 

York, 1980, p. 30. 
39. O. Darras, R. Séguéla, Polymer 34 (1993) 2946. 
40. L. Lu, R.G. Alamo, L. Mandelkern, Macromolecules 27 (1994) 6571. 
41. U.W. Gedde, Polymer Physics; Chapman & Hall: London, 1995. 
42. K. Shin, E. Woo, Y.G. Jeong, C. Kim, J. Huh, and K-W. Kim, Macromolecules 40 (2007) 

6617. 
43. K. Kageyama, J. Tamazawa, T. Aida, Science 285 (1999) 2113. 
44. S. Chen, C. Guo, L. Liu, H. Xu, J. Dong, Y. Hu, Polymer 46 (2005)1093. 
45. A. Marcilla, A. Gomez-Siurana, D. Berenguer, Appl, Catal, A−Gen. 301 (2006) 222. 
46. F.S.M. Sinfrônio, A.G. Souza, Ieda M. G. Santos, V.J. Fernandes Jr., Cs. Novák, Zsuzsanna 

Éhen, J. Therm. Anal. Calorim., 85 (2006) 391. 
47. J. Arranz-Andrés, J.L. Guevara, T. Velilla, R. Quijada, R. Benavente, E. Pérez, M.L. 

Cerrada, Polymer 46 (2005) 12287. 
48. J.M. López-Majada, H. Palza, J.L. Guevara, R. Quijada, M.C. Martínez, R. Benavente, J.M. 

Pereña, E. Pérez, M.L. Cerrada, J. Polym. Sci. Polym. Phys. 44 (2006)1253. 
49. a) H. Palza, J.M. López-Majada, R. Quijada, R. Benavente, Pérez E, M.L. Cerrada, 

Macromol. Chem. Phys. 206 (2005) 1221; b) H. Palza, J.M. López-Majada, R. Quijada, J.M. 
Pereña, R. Benavente, E. Pérez, M.L. Cerrada, Macromol. Chem. Phys. 209 (2008) 2259. 

50. C. Fonseca, J.M. Pereña, R. Benavente, M.L. Cerrada, A. Bello, E. Pérez, Polymer 36 (1995) 
1887. 

51. a) R. Popli, M. Glotin, L. Mandelkern, R.S. Benson, J. Polym. Sci. Polym. Phys. 22 (1984) 
407; b) R. Popli, L. Mandelkern. Polym. Bull. 9 (1983) 260. 

52. M.L. Cerrada, J M. Pereña, R. Benavente, E. Pérez, Polymer 41 (2000) 6655.. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 24

53. M.L. Cerrada, R. Benavente, B. Peña, E. Pérez, Polymer 41 (2000) 5957. 
54. T.F. Schatzki, J. Polym. Sci. 57 (1962) 337. 
55. R.H. Boyd, Polymer 26 (1985) 1123. 
56. I.M. Ward, Mechanical Properties of Solid Polymers, 2nd ed. Chichester: J. Wiley and Sons, 

1983. 
57. B. McCrum, B. Read, G. Williams. Anelastic and Dielectric Effects in Polymeric Solids. 

New York: Dover Publications, 1991. 
58. P.I. Vincent, Polymer 1 (1960) 425.  
59. J. Heijboer, J. Polym. Sci. Polym. Symp. 16 (1967) 3755. 
60. A. Hiltner, E. Baer, Polymer 15 (1974) 805. 
61. S.H. Jafari, A.K. Gupta, J. Appl. Polym. Sci. 78 (2000) 962. 
62. O. Prieto, J.M. Pereña, R. Benavente, E. Pérez, M.L. Cerrada, J. Polym. Sci. Polym. Phys. 41 

(2003) 1878.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 25

 

Table 1. Parameters of the MCM-41 mesoporous materials used as fillers and/or supports. 

Sample 

Modifying 

agent content 

(mmol/g) 

Silane weight loss % 

(w/w) [a] 
SBET 

(m2/g) 

Vp 
[b] 

(cm3/g) 

AExt 
[b] 

(m2/g) 

Dp
[c] 

(Å) 

MCM-41 - - 873 0.68 44 28 

MCM-41-VS 7.5 5,2 757 0.50 42 23 

MCM-41-OES 7.5 13 576 0.32 20 17 

 
SBET: specific surface area; Vp: specific pore volume; AExt: external area; Dp: average pore 
diameter estimated. 
[a] Determined from TGA.  
[b] Calculated using the t-plot method. It corresponds to mesoporous volume for the samples.  
[c] Calculated using the Barrett–Joyner–Halenda (BJH) method.  
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Table 2. Polymerization conditions and activities obtained for the synthesis of HDPE/MCM41 

hybrids[a]. 

Sample Support/Filler Method 

Zr 

loading 

(µmol/g) 

[Zr] 

(10-5M) 

Activity 

(kg PE/ 

mol Zr . h) 

Filler 

content[c] 

(wt. %) 

HDPE - H - 3.8 13700 - 

HDPE/MCM41-VS-8h  MCM-41-VS H - 3.8 13020 8 

HDPE/MCM41-VS-23h[b]  MCM-41-VS H - 3.8 10340 23 

HDPE/MCM41-VS-9s  MCM-41-VS S 6 1.2 650 9 

HDPE/MCM41-VS-28s[b]  MCM-41-VS S 6 2.4 1250 28 

HDPE/MCM41-OES-7h  MCM-41-OES H - 3.8 13077 7 

HDPE/MCM41-OES-7s  MCM-41-OES S 12 2.4 830 7 

HDPE/MCM41-OES-25s[b]  MCM-41-OES S 12 4.8 430 25 

 

[a] Pethylene = 1.2 bar, T = 25 ºC, Al/Zr=1000, weight of MCM-41 = 100 mg; [b]: weight of 

MCM-41 = 200 mg. [c] Obtained by TGA; H: Homogeneous catalyst, S: Supported catalyst 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 27

Table 3. Average MCM-41 wt.% content estimated by thermogravimetry (TGA); crystallinity estimated from WAXS, fc
WAXS; normalized crystallinity, 

fc
DSC, as well as transition temperatures, Tm and Tc, determined from differential scanning calorimetry, DSC, for first melting, crystallization and second 

melting, F1, C and F2, respectively. The fc
DSC

F1
CONF and  fc

DSC
F1

EXT columns are related to crystallinity within and out the MCM-41 hexagonal 

arrangements, respectively. 

Sample 

MCM-41 

content 

(wt.%TGA) 

fc
WAXS

 fc
DSC

F1
TOTAL fc

DSC
F1

CONF fc
DSC

F1
EXT

 

Tm
F1 

(ºC) 
fc

DSC
C

TOTAL 
Tc

 

(ºC) 
fc

DSC
F2

TOTAL 
Tm

F2 

(ºC) 

HDPE 0 0.64 0.59 0.00 0.59 133.5 0.59 119.5 0.59 134.0 

HDPE/MCM41-VS-8h  8 0.55 0.58 0.05 0.53 133.5 0.58 120.5 0.58 134.5 

HDPE/MCM41-VS-23h  23 0.50 0.58 0.09 0.49 133.5 0.56 119.5 0.56 134.5 

HDPE/MCM41-VS-9s  9 0.55 0.58 0.04 0.54 133.5 0.55 119.5 0.55 134.0 

HDPE/MCM41-VS-28s 28 0.42 0.58 0.10 0.48 133.0 0.50 121.0 0.50 134.5 

HDPE/MCM41-OES-7h  7 0.56 0.58 0.01 0.57 132.0 0.59 120.0 0.59 135.0 

HDPE/MCM41-OES-7s  7 0.52 0.46 0.02 0.44 134.0 0.46 120.0 0.46 133.5 

HDPE/MCM41-OES-25s  25 0.47 0.58 0.07 0.49 132.5 0.51 121.0 0.51 134.0 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 28

Table 4. Thermogravimetric results: average MCM-41 wt.% content and characteristic decomposition temperatures at specific mass loss (5% –T5%–, 

20% –T20%– and 50% –T50%–) under both oxidant and inert atmospheres for all the specimens. 

Sample 

MCM-41 

content 

(wt.%TGA) 

Oxidant atmosphere Inert atmosphere 

T5% 

(ºC) 

T20% 

(ºC) 

T50% 

(ºC) 

T5% 

(ºC) 

T20% 

(ºC) 

T50% 

(ºC) 

HDPE 0 310.0 403.5 418.5 446.0 465.0 478.5 

HDPE/MCM41-VS-8h  8 288.5 341.0 430.5 418.5 443.5 460.0 

HDPE/MCM41-VS-23h  23 258.5 283.0 351.5 391.0 419.0 443.0 

HDPE/MCM41-VS-9s  9 287.5 325.5 437.0 370.5 406.5 434.0 

HDPE/MCM41-VS-28s 28 258.5 288.0 364.5 363.5 390.0 413.5 

HDPE/MCM41-OES-7h  7 276.5 331.5 432.5 442.5 463.5 476.5 

HDPE/MCM41-OES-7s  7 295.0 359.0 428.5 413.0 442.0 459.5 

HDPE/MCM41-OES-25s  25 260.0 300.0 383.5 365.5 404.0 435.0 
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Table 5. Relaxation temperature for the two relaxation processes (in E″ basis), storage modulus 

value at 25 ºC and area under tan δ curves from -50 to 150 ºC in the different nanocomposites at 

3 Hz. Hit is referred to values of indentation hardness at 25 ºC. 

sample 
MCM-41 

(wt.%TGA) 

T (ºC) E'25 ºC 

(MPa) 

tan δ area 

(a. u.) 

Hit 

(MPa) γ α 

HDPE 0 -112 50 710 22 47.5 

HDPE/MCM41-VS-8h  8 -112 52 1220 19 74.2 

HDPE/MCM41-VS-23h  23 -114 64 1670 16 94.0 

HDPE/MCM41-VS-9s  9 -111 60 950 18 70.0 

HDPE/MCM41-VS-28s 28 -115 66 2100 15 118.1 

HDPE/MCM41-OES-7h  7 -113 54 1280 20 70.5 

HDPE/MCM41-OES-7s  7 -110 53 945 19 52.4 

HDPE/MCM41-OES-25s  25 -114 67 2060 16 145.5 
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Figure Captions 

Figure 1 29Si CP/MAS NMR spectra for the different mesoporous materials analyzed: neat 

MCM-41; MCM-41-VS; and MCM-41-OES (from top to bottom). 

Figure 2 Diffraction profiles at either middle (MAXS, left plot) or wide (WAXS, right plot) 

angles at room temperature for the HDPE homopolymer, MCM-41 and the different 

hybrids. Some of the MAXS patterns have been omitted and the WAXS ones have been 

vertically shifted for the sake of clarity. 

Figure 3 TEM micrographs for different hybrids at similar silane functionalized MCM-41 

content: HDPE/MCM41-VS-8h, HDPE/MCM41-VS-9s and HDPE/MCM41-OES-7s, 

from top to bottom, respectively. 

Figure 4 DSC first melting curves for HDPE homopolymer and the hybrids, at 10 ºC/min. The 

inset represents an augment at the specific temperature interval. 

Figure 5 Crystallinity values determined from: X ray profiles (fc
WAXS); total DSC enthalpy 

during the first run; DSC enthalpy related to the main melting process; and DSC 

enthalpy ascribed to the confinement peak endotherm centered at around 70-80 ºC. 

Figure 6 Thermogravimetry curves under air (left plot) and inert (right plot) environments for 

the different hybrids synthesized by using MCM-41 microparticles functionalized with 

VS (upper curves) and with OES (right curves). HDPE has been represented in all the 

cases for a better comparison. 

Figure 7 Temperature dependence of the real and imaginary components of complex modulus, 

E′, and E′′ as well as of the loss tangent, tan δ, for the different samples. 

Figure 8 Load-maintenance-unload vs. depth curves for the different hybrids under study. 
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Figure 8. 
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o Materials based on polyethylene and functionalized MCM-41 particles have been synthesized 

 

o Several approaches with silanes have been performed to decorate MCM-41 microparticles 

 

o Changes on active species stability seem to occur from MCM-41-OES to MCM-41-VS supports 

 

o Decorated MCM-41 particles act as catalyst carrier as well as filler. 

 

o A secondary endothermic process appears at around 80 ºC. The resulting materials are, then, 

nanocomposites 

 

o MCM-41 incorporation improves the ultimate mechanical performance without varying the 

final processing temperature.  

 


