180 research outputs found

    Open access series of imaging studies: Longitudinal MRI data in nondemented and demented older adults

    Get PDF
    The Open Access Series of Imaging Studies (OASIS) is a series of neuroimaging data sets that is publicly available for study and analysis. The present MRI data set consists of a longitudinal collection of 150 subjects aged 60 to 96 all acquired on the same scanner using identical sequences. Each subject was scanned on two or more visits, separated by at least one year for a total of 373 imaging sessions. Subjects were characterized using the Clinical Dementia Rating (CDR) as either nondemented or with very mild to mild Alzheimer‘s disease (AD). 72 of the subjects were characterized as nondemented throughout the study. 64 of the included subjects were characterized as demented at the time of their initial visits and remained so for subsequent scans, including 51 individuals with CDR 0.5 similar level of impairment to individuals elsewhere considered to have ‘mild cognitive impairment’. Another 14 subjects were characterized as nondemented at the time of their initial visit (CDR 0) and were subsequently characterized as demented at a later visit (CDR > 0). The subjects were all right-handed and include both men (n=62) and women (n=88). For each scanning session, 3 or 4 individual T1-weighted MRI scans were obtained. Multiple within-session acquisitions provide extremely high contrast-to-noise making the data amenable to a wide range of analytic approaches including automated computational analysis. Automated calculation of whole brain volume is presented to demonstrate use of the data for measuring differences associated with normal aging and AD

    Longitudinal grey and white matter changes in frontotemporal dementia and Alzheimer's disease

    Get PDF
    Behavioural variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD) dementia are characterised by progressive brain atrophy. Longitudinal MRI volumetry may help to characterise ongoing structural degeneration and support the differential diagnosis of dementia subtypes. Automated, observer-independent atlas-based MRI volumetry was applied to analyse 102 MRI data sets from 15 bvFTD, 14 AD, and 10 healthy elderly control participants with consecutive scans over at least 12 months. Anatomically defined targets were chosen a priori as brain structures of interest. Groups were compared regarding volumes at clinic presentation and annual change rates. Baseline volumes, especially of grey matter compartments, were significantly reduced in bvFTD and AD patients. Grey matter volumes of the caudate and the gyrus rectus were significantly smaller in bvFTD than AD. The bvFTD group could be separated from AD on the basis of caudate volume with high accuracy (79% cases correct). Annual volume decline was markedly larger in bvFTD and AD than controls, predominantly in white matter of temporal structures. Decline in grey matter volume of the lateral orbitofrontal gyrus separated bvFTD from AD and controls. Automated longitudinal MRI volumetry discriminates bvFTD from AD. In particular, greater reduction of orbitofrontal grey matter and temporal white matter structures after 12 months is indicative of bvFTD

    Biomarkers Predicting Alzheimer's Disease in Cognitively Normal Aging

    Get PDF
    The pathophysiologic process of Alzheimer's disease (AD) begins years before the diagnosis of clinical dementia. This concept of preclinical AD has arisen from the observation of AD pathologic findings such as senile plaques and neurofibrillary tangles in the brains of people who at the time of death had normal cognitive function. Recent advances in biomarker studies now provide the ability to detect the pathologic changes of AD, which are antecedent to symptoms of the illness, in cognitively normal individuals. Functional and structural brain alterations that begin with amyloid-β accumulation already show the patterns of abnormality seen in individuals with dementia due to AD. The presence of preclinical AD provides a critical opportunity for potential interventions with disease-modifying therapy. This review focuses on the studies of antecedent biomarkers for preclinical AD

    The effect of body mass index on global brain volume in middle-aged adults: a cross sectional study

    Get PDF
    BACKGROUND: Obesity causes or exacerbates a host of medical conditions, including cardiovascular, pulmonary, and endocrine diseases. Recently obesity in elderly women was associated with greater risk of dementia, white matter ischemic changes, and greater brain atrophy. The purpose of this study was to determine whether body type affects global brain volume, a marker of atrophy, in middle-aged men and women. METHODS: T1-weighted 3D volumetric magnetic resonance imaging was used to assess global brain volume for 114 individuals 40 to 66 years of age (average = 54.2 years; standard deviation = 6.6 years; 43 men and 71 women). Total cerebrospinal fluid and brain volumes were obtained with an automated tissue segmentation algorithm. A regression model was used to determine the effect of age, body mass index (BMI), and other cardiovascular risk factors on brain volume and cognition. RESULTS: Age and BMI were each associated with decreased brain volume. BMI did not predict cognition in this sample; however elevated diastolic blood pressure was associated with poorer episodic learning performance. CONCLUSION: These findings suggest that middle-aged obese adults may already be experiencing differentially greater brain atrophy, and may potentially be at greater risk for future cognitive decline

    Maximum (prior) brain size, not atrophy, correlates with cognition in community-dwelling older people: a cross-sectional neuroimaging study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain size is associated with cognitive ability in adulthood (correlation ~ .3), but few studies have investigated the relationship in normal ageing, particularly beyond age 75 years. With age both brain size and fluid-type intelligence decline, and regional atrophy is often suggested as causing decline in specific cognitive abilities. However, an association between brain size and intelligence may be due to the persistence of this relationship from earlier life.</p> <p>Methods</p> <p>We recruited 107 community-dwelling volunteers (29% male) aged 75–81 years for cognitive testing and neuroimaging. We used principal components analysis to derived a 'general cognitive factor' (g) from tests of fluid-type ability. Using semi-automated analysis, we measured whole brain volume, intracranial area (ICA) (an estimate of maximal brain volume), and volume of frontal and temporal lobes, amygdalo-hippocampal complex, and ventricles. Brain atrophy was estimated by correcting WBV for ICA.</p> <p>Results</p> <p>Whole brain volume (WBV) correlated with general cognitive ability (g) (r = .21, P < .05). Statistically significant associations between brain areas and specific cognitive abilities became non-significant when corrected for maximal brain volume (estimated using ICA), i.e. there were no statistically significant associations between atrophy and cognitive ability. The association between WBV and g was largely attenuated (from .21 to .03: i.e. attenuating the variance by 98%) by correcting for ICA. ICA accounted for 6.2% of the variance in g in old age, whereas atrophy accounted for < 1%.</p> <p>Conclusion</p> <p>The association between brain regions and specific cognitive abilities in community dwelling people of older age is due to the life-long association between whole brain size and general cognitive ability, rather than atrophy of specific regions. Researchers and clinicians should therefore be cautious of interpreting global or regional brain atrophy on neuroimaging as contributing to cognitive status in older age without taking into account prior mental ability and brain size.</p
    corecore