452 research outputs found

    Scattering statistics of rock outcrops: Model-data comparisons and Bayesian inference using mixture distributions

    Get PDF
    The probability density function of the acoustic field amplitude scattered by the seafloor was measured in a rocky environment off the coast of Norway using a synthetic aperture sonar system, and is reported here in terms of the probability of false alarm. Interpretation of the measurements focused on finding appropriate class of statistical models (single versus two-component mixture models), and on appropriate models within these two classes. It was found that two-component mixture models performed better than single models. The two mixture models that performed the best (and had a basis in the physics of scattering) were a mixture between two K distributions, and a mixture between a Rayleigh and generalized Pareto distribution. Bayes' theorem was used to estimate the probability density function of the mixture model parameters. It was found that the K-K mixture exhibits significant correlation between its parameters. The mixture between the Rayleigh and generalized Pareto distributions also had significant parameter correlation, but also contained multiple modes. We conclude that the mixture between two K distributions is the most applicable to this dataset.Comment: 15 pages, 7 figures, Accepted to the Journal of the Acoustical Society of Americ

    Twisting Flux Tubes as a cause of Micro-Flaring Activity

    Full text link
    High-cadence optical observations of an H-alpha blue-wing bright point near solar AR NOAA 10794 are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system, the Rapid Dual Imager. Wavelet analysis is undertaken to search for intensity-related oscillatory signatures, and periodicities ranging from 15 to 370 s are found with significance levels exceeding 95%. During two separate microflaring events, oscillation sites surrounding the bright point are observed to twist. We relate the twisting of the oscillation sites to the twisting of physical flux tubes, thus giving rise to reconnection phenomena. We derive an average twist velocity of 8.1 km/s and detect a peak in the emitted flux between twist angles of 180 and 230 degrees.Comment: 8 pages, 10 figure

    Two-Dimensional Helioseismic Power, Phase, and Coherence Spectra of {\it Solar Dynamics Observatory} Photospheric and Chromospheric Observables

    Full text link
    While the {\it Helioseismic and Magnetic Imager} (HMI) onboard the {\it Solar Dynamics Observatory} (SDO) provides Doppler velocity [VV], continuum intensity [ICI_C], and line-depth [LdLd] observations, each of which is sensitive to the five-minute acoustic spectrum, the {\it Atmospheric Imaging Array} (AIA) also observes at wavelengths -- specifically the 1600 and 1700 Angstrom bands -- that are partly formed in the upper photosphere and have good sensitivity to acoustic modes. In this article we consider the characteristics of the spatio--temporal Fourier spectra in AIA and HMI observables for a 15-degree region around NOAA Active Region 11072. We map the spatio--temporal-power distribution for the different observables and the HMI Line Core [ILI_L], or Continuum minus Line Depth, and the phase and coherence functions for selected observable pairs, as a function of position and frequency. Five-minute oscillation power in all observables is suppressed in the sunspot and also in plage areas. Above the acoustic cut-off frequency, the behaviour is more complicated: power in HMI ICI_C is still suppressed in the presence of surface magnetic fields, while power in HMI ILI_L and the AIA bands is suppressed in areas of surface field but enhanced in an extended area around the active region, and power in HMI VV is enhanced in a narrow zone around strong-field concentrations and suppressed in a wider surrounding area. The relative phase of the observables, and their cross-coherence functions, are also altered around the active region. These effects may help us to understand the interaction of waves and magnetic fields in the different layers of the photosphere, and will need to be taken into account in multi-wavelength local helioseismic analysis of active regions.Comment: 18 pages, 15 figures, to be published in Solar Physic

    An Interdigitated Pixel PIN Detector for Energetic Particle Spectroscopy in Space

    Get PDF
    We describe a new two-dimensional position-sensitive detector, now under development, for use in space-borne energetic particle spectrometers. The novel feature of this device is the use of interdigitated pixels to provide both dimensions of position information from a single side of the detector, while a measurement of the energy deposition is derived from the opposite side. An advantage of this approach is that significant reductions in the complexity, power, and weight of the associated read-out electronics can be realized without sacrificing position or energy resolution

    An integrated space physics instrument (ISPI) for Solar Probe

    Full text link
    Instruments for the Solar Probe mission must be designed not only to address the unique scientific measurement requirements, but must be compatible with the modest resource dollars as well as tight constraints on mass and power. Another unique aspect of the Solar Probe mission is its constraint on telemetry and the fact that the prime science is conducted in a single flyby. The instrument system must be optimized to take advantage of the telemetry and observing time available. JPL, together with industry and university partners, is designing an Integrated Space Physics Instrument (ISPI) which will measure magnetic fields, plasma waves, thermal plasma, energetic particles, dust, and perform EUV/visible and coronal imaging for the Solar Probe mission. ISPI uses a new architecture and incorporates technology which not only eliminates unnecessary duplication of function, but allows sensors to share data and optimize science. The current ISPI design goal (for a flight package) is a 5 kilogram/10 watt payload. © 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87393/2/131_1.pd

    The solar chromosphere at high resolution with IBIS. I. New insights from the Ca II 854.2 nm line

    Full text link
    (Abridged) Aims: In this paper, we seek to establish the suitability of imaging spectroscopy performed in the Ca II 854.2 nm line as a means to investigate the solar chromosphere at high resolution. Methods: We utilize monochromatic images obtained with the Interferometric BIdimensional Spectrometer (IBIS) at multiple wavelengths within the Ca II 854.2 nm line and over several quiet areas. We analyze both the morphological properties derived from narrow-band monochromatic images and the average spectral properties of distinct solar features such as network points, internetwork areas and fibrils. Results: The spectral properties derived over quiet-Sun targets are in full agreement with earlier results obtained with fixed-slit spectrographic observations, highlighting the reliability of the spectral information obtained with IBIS. Furthermore, the very narrowband IBIS imaging reveals with much clarity the dual nature of the Ca II 854.2 nm line: its outer wings gradually sample the solar photosphere, while the core is a purely chromospheric indicator. The latter displays a wealth of fine structures including bright points, akin to the Ca II H2V and K2V grains, as well as fibrils originating from even the smallest magnetic elements. The fibrils occupy a large fraction of the observed field of view even in the quiet regions, and clearly outline atmospheric volumes with different dynamical properties, strongly dependent on the local magnetic topology. This highlights the fact that 1-D models stratified along the vertical direction can provide only a very limited representation of the actual chromospheric physics.Comment: 13 pages, 8 figures. Accepted in A&A. Revised version after referee's comments. New Fig. 1 and 7. Higher quality figures in http://www.arcetri.astro.it/~gcauzzi/papers/ibis.caii.pd

    A systematic review and meta-synthesis of the impact of low back pain on people's lives

    Get PDF
    Copyright @ 2014 Froud et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Background - Low back pain (LBP) is a common and costly problem that many interpret within a biopsychosocial model. There is renewed concern that core-sets of outcome measures do not capture what is important. To inform debate about the coverage of back pain outcome measure core-sets, and to suggest areas worthy of exploration within healthcare consultations, we have synthesised the qualitative literature on the impact of low back pain on people’s lives. Methods - Two reviewers searched CINAHL, Embase, PsycINFO, PEDro, and Medline, identifying qualitative studies of people’s experiences of non-specific LBP. Abstracted data were thematic coded and synthesised using a meta-ethnographic, and a meta-narrative approach. Results - We included 49 papers describing 42 studies. Patients are concerned with engagement in meaningful activities; but they also want to be believed and have their experiences and identity, as someone ‘doing battle’ with pain, validated. Patients seek diagnosis, treatment, and cure, but also reassurance of the absence of pathology. Some struggle to meet social expectations and obligations. When these are achieved, the credibility of their pain/disability claims can be jeopardised. Others withdraw, fearful of disapproval, or unable or unwilling to accommodate social demands. Patients generally seek to regain their pre-pain levels of health, and physical and emotional stability. After time, this can be perceived to become unrealistic and some adjust their expectations accordingly. Conclusions - The social component of the biopsychosocial model is not well represented in current core-sets of outcome measures. Clinicians should appreciate that the broader impact of low back pain includes social factors; this may be crucial to improving patients’ experiences of health care. Researchers should consider social factors to help develop a portfolio of more relevant outcome measures.Arthritis Research U

    Characterization and Comparison of 2 Distinct Epidemic Community-Associated Methicillin-Resistant Staphylococcus aureus Clones of ST59 Lineage.

    Get PDF
    Sequence type (ST) 59 is an epidemic lineage of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) isolates. Taiwanese CA-MRSA isolates belong to ST59 and can be grouped into 2 distinct clones, a virulent Taiwan clone and a commensal Asian-Pacific clone. The Taiwan clone carries the Panton-Valentine leukocidin (PVL) genes and the staphylococcal chromosomal cassette mec (SCCmec) VT, and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and a frequent colonizer of healthy children. Isolates of both clones were characterized by their ability to adhere to respiratory A549 cells, cytotoxicity to human neutrophils, and nasal colonization of a murine and murine sepsis models. Genome variation was determined by polymerase chain reaction of selected virulence factors and by multi-strain whole genome microarray. Additionally, the expression of selected factors was compared between the 2 clones. The Taiwan clone showed a much higher cytotoxicity to the human neutrophils and caused more severe septic infections with a high mortality rate in the murine model. The clones were indistinguishable in their adhesion to A549 cells and persistence of murine nasal colonization. The microarray data revealed that the Taiwan clone had lost the ø3-prophage that integrates into the β-hemolysin gene and includes staphylokinase- and enterotoxin P-encoding genes, but had retained the genes for human immune evasion, scn and chps. Production of the virulence factors did not differ significantly in the 2 clonal groups, although more α-toxin was expressed in Taiwan clone isolates from pneumonia patients. In conclusion, the Taiwan CA-MRSA clone was distinguished by enhanced virulence in both humans and an animal infection model. The evolutionary acquisition of PVL, the higher expression of α-toxin, and possibly the loss of a large portion of the β-hemolysin-converting prophage likely contribute to its higher pathogenic potential than the Asian-Pacific clone

    Potential Antiviral Options against SARS-CoV-2 Infection

    Get PDF
    As of June 2020, the number of people infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) continues to skyrocket, with more than 6.7 million cases worldwide. Both the World Health Organization (WHO) and United Nations (UN) has highlighted the need for better control of SARS-CoV-2 infections. However, developing novel virus-specific vaccines, monoclonal antibodies and antiviral drugs against SARS-CoV-2 can be time-consuming and costly. Convalescent sera and safe-in-man broad-spectrum antivirals (BSAAs) are readily available treatment options. Here, we developed a neutralization assay using SARS-CoV-2 strain and Vero-E6 cells. We identified the most potent sera from recovered patients for the treatment of SARS-CoV-2-infected patients. We also screened 136 safe-in-man broad-spectrum antivirals against the SARS-CoV-2 infection in Vero-E6 cells and identified nelfinavir, salinomycin, amodiaquine, obatoclax, emetine and homoharringtonine. We found that a combination of orally available virus-directed nelfinavir and host-directed amodiaquine exhibited the highest synergy. Finally, we developed a website to disseminate the knowledge on available and emerging treatments of COVID-19
    corecore