106 research outputs found

    Wavelet transform modulus maxima based fractal correlation analysis

    Full text link
    The wavelet transform modulus maxima (WTMM) used in the singularity analysis of one fractal function is extended to study the fractal correlation of two multifractal functions. The technique is developed in the framework of joint partition function analysis (JPFA) proposed by Meneveau et al. [1] and is shown to be equally effective. In addition, we show that another leading approach developed for the same purpose, namely, relative multifractal analysis, can be considered as a special case of JPFA at a particular parameter setting.Comment: 18 pgs, 5 fig

    A truncated ultrasound screening procedure for atheroma of the cervical arteries in asymptomatic diabetic patients: Evidence from a retrospective study

    Get PDF
    AimTo demonstrate that ultrasound screening of diabetic patients presenting with no cerebrovascular symptoms for evaluation of atheroma of the cervical arteries can be limited to the carotid arteries. Methods We retrospectively analyzed the results of cervical artery ultrasound imaging of diabetic patients with no cerebrovascular symptoms. This diabetic population was divided into two subpopulations according to whether or not the vertebral and subclavian artery findings were normal or abnormal. Results Of the 760 patients who fulfilled the criteria for study inclusion, the ultrasound imaging findings of the vertebral and subclavian arteries were normal in 712 cases. Review of the files of the 48 remaining patients showed that findings for either the vertebral or subclavian arteries did not lead to any changes in patient management because of associated risk factors, carotid atheroma or peripheral arterial disease. Conclusion A vascular risk evaluation in diabetic patients could include ultrasound imaging assessment for cervical artery atheroma and our data suggest that such an evaluation could be focused solely on the carotid arteries

    Moderate exercise effects on orthostatic intolerance while wearing protective clothing

    Get PDF
    INTRODUCTION: Wearing protective clothing can have deleterious effects on operational capacities and can cause non-compensable thermal stress. We studied the effects of moderate exercise on orthostatic tolerance while wearing protective clothing in eight healthy subjects tolerant to orthostatism. METHODS: Subjects performed a 60-min moderate exercise on a treadmill followed by a 45-min head-up tilt test. Subjects performed the moderate exercise either in a comfortable condition (control, CON) or wearing protective clothing (PRO) in a random order. RESULTS: Compared with the CON trial, exercise in the PRO trial induced higher body dehydration, heart rate, and rectal temperature and a decrease in plasma volume. Orthostatic tolerance was significantly reduced in the PRO trial (23.7 +/- 0.2 min) compared with the CON trial (40.7 +/- 1.0 min). Transition from supine to head-up position caused a significant decrease in blood pressure in the PRO compared with the CON. RR interval was smaller in the PRO trial compared with CON in both the supine and head-up positions. Spontaneous baroreflex sensitivity was decreased in the PRO, either supine or standing, compared to CON (4.6 +/- 0.5 ms x mmHg(-1) and 14.5 +/- 4.2 ms x mmHg(-1) in supine, and 3.3 +/- 0.6 ms x mmHg(-1) and 7.0 +/- 0.6 ms x mmHg(-1) in standing, for PRO and CON, respectively). DISCUSSION: These results suggest that the large decrease in the tolerance to orthostatism after exercise while wearing protective clothing was due to the impossibility of maintaining an adapted blood pressure induced by a conflict between the needs of peripherical vasoconstriction linked to the standing posture, the needs of vasodilatation linked to thermoregulation, and a drop in the sensibility of the spontaneous baroreflex

    Skin vascular resistance in the standing position increases significantly after 7 days of dry immersion

    Get PDF
    Actual and simulated microgravity induces hypovolemia and cardiovascular deconditioning, associated with vascular dysfunction. We hypothesized that vasoconstriction of skin microcirculatory bed should be altered following 7 days of simulated microgravity in order to maintain cardiovascular homeostasis during active standing. Eight healthy men were studied before and after 7 days of simulated microgravity modeled by dry immersion (DI). Changes of plasma volume and orthostatic tolerance were evaluated. Calf skin blood flow (laser-Doppler flowmetry), ECG and blood pressure signal during a 10-min stand test were recorded, and skin vascular resistance, central hemodynamics, baroreflex sensitivity and heart rate variability were estimated. After DI we observed increased calf skin vascular resistance in the standing position (12.0 +/- 1.0 AU-after- vs. 6.8 +/- 1.4 AU-before), while supine it was unchanged. Cardiovascular deconditioning was confirmed by greater tachycardia on standing and by hypovolemia (-16 +/- 3% at day 7 of DI). Total peripheral resistance and indices of cardiovascular autonomic control were not modified. In conclusion, unchanged autonomic control and total peripheral resistance suggest that increased skin vasoconstriction to standing involves rather local mechanisms-as venoarteriolar reflex-and might compensate insufficient vasoconstriction of other vascular beds

    Clinical autonomic nervous system laboratories in Europe: a joint survey of the European Academy of Neurology and the European Federation of Autonomic Societies

    Get PDF
    © 2022 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.Background and purpose: Disorders of the autonomic nervous system (ANS) are common conditions, but it is unclear whether access to ANS healthcare provision is homogeneous across European countries. The aim of this study was to identify neurology-driven or interdisciplinary clinical ANS laboratories in Europe, describe their characteristics and explore regional differences. Methods: We contacted the European national ANS and neurological societies, as well as members of our professional network, to identify clinical ANS laboratories in each country and invite them to answer a web-based survey. Results: We identified 84 laboratories in 22 countries and 46 (55%) answered the survey. All laboratories perform cardiovascular autonomic function tests, and 83% also perform sweat tests. Testing for catecholamines and autoantibodies are performed in 63% and 56% of laboratories, and epidermal nerve fiber density analysis in 63%. Each laboratory is staffed by a median of two consultants, one resident, one technician and one nurse. The median (interquartile range [IQR]) number of head-up tilt tests/laboratory/year is 105 (49-251). Reflex syncope and neurogenic orthostatic hypotension are the most frequently diagnosed cardiovascular ANS disorders. Thirty-five centers (76%) have an ANS outpatient clinic, with a median (IQR) of 200 (100-360) outpatient visits/year; 42 centers (91%) also offer inpatient care (median 20 [IQR 4-110] inpatient stays/year). Forty-one laboratories (89%) are involved in research activities. We observed a significant difference in the geographical distribution of ANS services among European regions: 11 out of 12 countries from North/West Europe have at least one ANS laboratory versus 11 out of 21 from South/East/Greater Europe (p = 0.021). Conclusions: This survey highlights disparities in the availability of healthcare services for people with ANS disorders across European countries, stressing the need for improved access to specialized care in South, East and Greater Europe.info:eu-repo/semantics/publishedVersio

    Clinical autonomic nervous system laboratories in Europe. A joint survey of the European Academy of Neurology and the European Federation of Autonomic Societies

    Get PDF
    Background and purpose: Disorders of the autonomic nervous system (ANS) are common conditions, but it is unclear whether access to ANS healthcare provision is homogeneous across European countries. The aim of this study was to identify neurology-driven or interdisciplinary clinical ANS laboratories in Europe, describe their characteristics and explore regional differences. Methods: We contacted the European national ANS and neurological societies, as well as members of our professional network, to identify clinical ANS laboratories in each country and invite them to answer a web-based survey. Results: We identified 84 laboratories in 22 countries and 46 (55%) answered the survey. All laboratories perform cardiovascular autonomic function tests, and 83% also perform sweat tests. Testing for catecholamines and autoantibodies are performed in 63% and 56% of laboratories, and epidermal nerve fiber density analysis in 63%. Each laboratory is staffed by a median of two consultants, one resident, one technician and one nurse. The median (interquartile range [IQR]) number of head-up tilt tests/laboratory/year is 105 (49–251). Reflex syncope and neurogenic orthostatic hypotension are the most frequently diagnosed cardiovascular ANS disorders. Thirty-five centers (76%) have an ANS outpatient clinic, with a median (IQR) of 200 (100–360) outpatient visits/year; 42 centers (91%) also offer inpatient care (median 20 [IQR 4–110] inpatient stays/year). Forty-one laboratories (89%) are involved in research activities. We observed a significant difference in the geographical distribution of ANS services among European regions: 11 out of 12 countries from North/West Europe have at least one ANS laboratory versus 11 out of 21 from South/East/Greater Europe (p = 0.021). Conclusions: This survey highlights disparities in the availability of healthcare services for people with ANS disorders across European countries, stressing the need for improved access to specialized care in South, East and Greater Europe

    EFAS/EAN survey on the influence of the COVID-19 pandemic on European clinical autonomic education and research

    Get PDF
    © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Purpose: To understand the influence of the coronavirus disease 2019 (COVID-19) pandemic on clinical autonomic education and research in Europe. Methods: We invited 84 European autonomic centers to complete an online survey, recorded the pre-pandemic-to-pandemic percentage of junior participants in the annual congresses of the European Federation of Autonomic Societies (EFAS) and European Academy of Neurology (EAN) and the pre-pandemic-to-pandemic number of PubMed publications on neurological disorders. Results: Forty-six centers answered the survey (55%). Twenty-nine centers were involved in clinical autonomic education and experienced pandemic-related didactic interruptions for 9 (5; 9) months. Ninety percent (n = 26/29) of autonomic educational centers reported a negative impact of the COVID-19 pandemic on education quality, and 93% (n = 27/29) established e-learning models. Both the 2020 joint EAN-EFAS virtual congress and the 2021 (virtual) and 2022 (hybrid) EFAS and EAN congresses marked higher percentages of junior participants than in 2019. Forty-one respondents (89%) were autonomic researchers, and 29 of them reported pandemic-related trial interruptions for 5 (2; 9) months. Since the pandemic begin, almost half of the respondents had less time for scientific writing. Likewise, the number of PubMed publications on autonomic topics showed the smallest increase compared with other neurological fields in 2020-2021 and the highest drop in 2022. Autonomic research centers that amended their trial protocols for telemedicine (38%, n = 16/41) maintained higher clinical caseloads during the first pandemic year. Conclusions: The COVID-19 pandemic had a substantial negative impact on European clinical autonomic education and research. At the same time, it promoted digitalization, favoring more equitable access to autonomic education and improved trial design.info:eu-repo/semantics/publishedVersio

    Une balance aréométrique à lecture directe

    No full text
    Pas de Résumé disponibl
    • 

    corecore