126 research outputs found

    Genetic and ultrastructural analysis reveals the key players and initial steps of bacterial magnetosome membrane biogenesis

    Get PDF
    Magnetosomes of magnetotactic bacteria contain well-ordered nanocrystals for magnetic navigation and have recently emerged as the most sophisticated model system to study the formation of membrane bounded organelles in prokaryotes. Magnetosome biosynthesis is thought to begin with the formation of a dedicated compartment, the magnetosome membrane (MM), in which the biosynthesis of a magnetic mineral is strictly controlled. While the biomineralization of magnetosomes and their subsequent assembly into linear chains recently have become increasingly well studied, the molecular mechanisms and early stages involved in MM formation remained poorly understood. In the Alphaproteobacterium Magnetospirillum gryphiswaldense, approximately 30 genes were found to control magnetosome biosynthesis. By cryo-electron tomography of several key mutant strains we identified the gene complement controlling MM formation in this model organism. Whereas the putative magnetosomal iron transporter MamB was most crucial for the process and caused the most severe MM phenotype upon elimination, MamM, MamQ and MamL were also required for the formation of wild-type-like MMs. A subset of seven genes (mamLQBIEMO) combined within a synthetic operon was sufficient to restore the formation of intracellular membranes in the absence of other genes from the key mamAB operon. Tracking of de novo magnetosome membrane formation by genetic induction revealed that magnetosomes originate from unspecific cytoplasmic membrane locations before alignment into coherent chains. Our results indicate that no single factor alone is essential for MM formation, which instead is orchestrated by the cumulative action of several magnetosome proteins

    Fracture properties of CrN hard coatings: Influence of the microstructure, alloying elements, and coating architecture

    Get PDF
    Transition metal nitrides are well known and applied as protective coating materials based on their unique refractory characteristics, such as high hardness or Young’s modulus. However, for long-term applications, the fracture toughness KIC is an essential factor as the integrity of the coating-substrate interface is impaired by cracking and subsequent environmental attacks. Please click Download on the upper right corner to see the full abstract

    Coherent vortex dynamics in a strongly-interacting superfluid on a silicon chip

    Full text link
    Two-dimensional superfluidity and quantum turbulence are directly connected to the microscopic dynamics of quantized vortices. However, surface effects have prevented direct observations of coherent vortex dynamics in strongly-interacting two-dimensional systems. Here, we overcome this challenge by confining a two-dimensional droplet of superfluid helium at microscale on the atomically-smooth surface of a silicon chip. An on-chip optical microcavity allows laser-initiation of vortex clusters and nondestructive observation of their decay in a single shot. Coherent dynamics dominate, with thermal vortex diffusion suppressed by six orders-of-magnitude. This establishes a new on-chip platform to study emergent phenomena in strongly-interacting superfluids, test astrophysical dynamics such as those in the superfluid core of neutron stars in the laboratory, and construct quantum technologies such as precision inertial sensors.Comment: Main text - 12 pages, 4 figures. Supplementary materials - 25 pages, 13 figure

    Genome-wide mapping of genetic determinants influencing DNA methylation and gene expression in human hippocampus

    Get PDF
    Emerging evidence emphasizes the strong impact of regulatory genomic elements in neurodevelopmental processes and the complex pathways of brain disorders. The present genome-wide quantitative trait loci analyses explore the cis-regulatory effects of single-nucleotide polymorphisms (SNPs) on DNA methylation (meQTL) and gene expression (eQTL) in 110 human hippocampal biopsies. We identify cis-meQTLs at 14,118 CpG methylation sites and cis-eQTLs for 302 3'-mRNA transcripts of 288 genes. Hippocampal cis-meQTL-CpGs are enriched in flanking regions of active promoters, CpG island shores, binding sites of the transcription factor CTCF and brain eQTLs. Cis-acting SNPs of hippocampal meQTLs and eQTLs significantly overlap schizophrenia-associated SNPs. Correlations of CpG methylation and RNA expression are found for 34 genes. Our comprehensive maps of cis-acting hippocampal meQTLs and eQTLs provide a link between disease-associated SNPs and the regulatory genome that will improve the functional interpretation of non-coding genetic variants in the molecular genetic dissection of brain disorders

    Towards an Intrinsic Doppler Correction for X-ray Spectroscopy of Stored Ions at CRYRING@ESR

    Get PDF
    We report on a new experimental approach for the Doppler correction of X-rays emitted by heavy ions, using novel metallic magnetic calorimeter detectors which uniquely combine a high spectral resolution with a broad bandwidth acceptance. The measurement was carried out at the electron cooler of CRYRING@ESR at GSI, Darmstadt, Germany. The X-ray emission associated with the radiative recombination of cooler electrons and stored hydrogen-like uranium ions was investigated using two novel microcalorimeter detectors positioned under 0∘ and 180∘ with respect to the ion beam axis. This new experimental setup allowed the investigation of the region of the N, M → L transitions in helium-like uranium with a spectral resolution unmatched by previous studies using conventional semiconductor X-ray detectors. When assuming that the rest-frame energy of at least a few of the recorded transitions is well-known from theory or experiments, a precise measurement of the Doppler shifted line positions in the laboratory system can be used to determine the ion beam velocity using only spectral information. The spectral resolution achievable with microcalorimeter detectors should, for the first time, allow intrinsic Doppler correction to be performed for the precision X-ray spectroscopy of stored heavy ions. A comparison with data from a previous experiment at the ESR electron cooler, as well as the conventional method of conducting Doppler correction using electron cooler parameters, will be discussed

    Combining schizophrenia and depression polygenic risk scores improves the genetic prediction of lithium response in bipolar disorder patients

    Get PDF
    Lithium is the gold standard therapy for Bipolar Disorder (BD) but its effectiveness differs widely between individuals. The molecular mechanisms underlying treatment response heterogeneity are not well understood, and personalized treatment in BD remains elusive. Genetic analyses of the lithium treatment response phenotype may generate novel molecular insights into lithium's therapeutic mechanisms and lead to testable hypotheses to improve BD management and outcomes. We used fixed effect meta-analysis techniques to develop meta-analytic polygenic risk scores (MET-PRS) from combinations of highly correlated psychiatric traits, namely schizophrenia (SCZ), major depression (MD) and bipolar disorder (BD). We compared the effects of cross-disorder MET-PRS and single genetic trait PRS on lithium response. For the PRS analyses, we included clinical data on lithium treatment response and genetic information for n = 2283 BD cases from the International Consortium on Lithium Genetics (ConLi+Gen; www.ConLiGen.org). Higher SCZ and MD PRSs were associated with poorer lithium treatment response whereas BD-PRS had no association with treatment outcome. The combined MET2-PRS comprising of SCZ and MD variants (MET2-PRS) and a model using SCZ and MD-PRS sequentially improved response prediction, compared to single-disorder PRS or to a combined score using all three traits (MET3-PRS). Patients in the highest decile for MET2-PRS loading had 2.5 times higher odds of being classified as poor responders than patients with the lowest decile MET2-PRS scores. An exploratory functional pathway analysis of top MET2-PRS variants was conducted. Findings may inform the development of future testing strategies for personalized lithium prescribing in BD
    • 

    corecore