
ARTICLE

Genome-wide mapping of genetic determinants
influencing DNA methylation and gene expression
in human hippocampus
Herbert Schulz1, Ann-Kathrin Ruppert1, Stefan Herms2,3,4, Christiane Wolf5,6,7, Nazanin Mirza-Schreiber5,

Oliver Stegle 6, Darina Czamara5, Andreas J. Forstner2,3,8, Sugirthan Sivalingam2, Susanne Schoch9,10,

Susanne Moebus11, Benno Pütz 5, Axel Hillmer12,13, Nadine Fricker2, Hartmut Vatter14,

Bertram Müller-Myhsok5,15,16, Markus M. Nöthen2, Albert J. Becker9, Per Hoffmann2,3,4,17,

Thomas Sander1 & Sven Cichon2,3,4,17

Emerging evidence emphasizes the strong impact of regulatory genomic elements in neu-

rodevelopmental processes and the complex pathways of brain disorders. The present

genome-wide quantitative trait loci analyses explore the cis-regulatory effects of single-

nucleotide polymorphisms (SNPs) on DNA methylation (meQTL) and gene expression

(eQTL) in 110 human hippocampal biopsies. We identify cis-meQTLs at 14,118 CpG methy-

lation sites and cis-eQTLs for 302 3′-mRNA transcripts of 288 genes. Hippocampal cis-

meQTL-CpGs are enriched in flanking regions of active promoters, CpG island shores, binding

sites of the transcription factor CTCF and brain eQTLs. Cis-acting SNPs of hippocampal

meQTLs and eQTLs significantly overlap schizophrenia-associated SNPs. Correlations of CpG

methylation and RNA expression are found for 34 genes. Our comprehensive maps of cis-

acting hippocampal meQTLs and eQTLs provide a link between disease-associated SNPs and

the regulatory genome that will improve the functional interpretation of non-coding genetic

variants in the molecular genetic dissection of brain disorders.
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Understanding the functional complexity of the human
brain is a major challenge for the genetic dissection of
common brain disorders. Genome-wide association stu-

dies (GWAS) successfully identified a large number of suscept-
ibility loci for these disorders1,2. However, the majority of
associated single-nucleotide polymorphisms (SNPs) are located in
non-coding genomic regions and usually their functional effects
remain elusive3. Differential spatiotemporal DNA methylation
and gene expression play a key role in normal neurodevelop-
mental processes and the complex and heterogeneous patho-
genesis of brain disorders4,5. The rapidly evolving
multidimensional epigenomic map of the regulatory genome
provides important insights into the functional role of non-
coding regulatory elements differentiating diverse transcriptional
profiles across a variety of tissue- and cell types6–9. Genomic
DNA sequence variations have been shown to alter the effects of
regulatory genomic elements and thereby influence DNA
methylation states and gene expression linking the regulatory
genome with individual genetic risk-loci4,9–21

Recent methodological advances allow a genome-wide
screening for allelic quantitative effects of DNA sequence var-
iants on DNA methylation (methylation quantitative trait loci:
meQTLs) as well as gene expression (eQTLs). With regard to the
tissue and cell type, as well as context-specific effects of meQTLs
and eQTLs, clinically and histopathologically well-characterized
human brain tissue is of critical importance to generate high-
quality DNA methylation and gene expression profiles8,9. Several
studies have mapped meQTLs and eQTLs in human brain tissue
across multiple regions14–22. However, the reliability of the
available meQTL and eQTL maps from human brain tissue faces
several challenges. First, the brain displays remarkable cellular
heterogeneity even within distinct brain regions, confounding
cell-type-sensitive DNA methylation states and gene expression
patterns18,20,23. Second, current sample sizes are relatively small
resulting in limited statistical power. Third, individual methylome
and transcriptome profiles are usually generated from post-
mortem brain tissue. Limitations of post-mortem tissue result
from cell damages and DNA/RNA degradation through post-
mortem ischemia and tissue preservation8,24. These challenges
may at least partly explain that the overlap and replicability of
meQTLs and eQTLs between independent studies is relatively
low16,20,25. The current state of knowledge warrants a deeper
understanding of specific regulatory processes in the brain to gain
novel insights into the underlying biological mechanisms of
brain-related traits.

Dysfunction of hippocampal–prefrontal interactions has been
implicated in a variety of neurological and psychiatric disorders,
such as temporal lobe epilepsy (TLE), Alzheimer’s disease, schi-
zophrenia, and depression26,27. Given the substantial impact of a
polygenic component in the etiology of these common brain
disorders, it is of special interest to identify those genetic variants
that regulate DNA methylation and gene expression in hippo-
campal tissue. Accordingly, the present study aims to generate a
comprehensive map of cis-acting meQTLs and eQTLs in human
hippocampal brain tissue by correlating genome-wide SNP gen-
otypes with high-density CpG methylation and gene expression
profiles. Therefore, we took advantage of the unique access to
fresh-frozen surgically resected hippocampal biopsies from 110
European patients with pharmacoresistant TLE. By annotating
meQTLs and eQTLs to the tissue-specific landscape of regulatory
genomic elements characterized by the Encyclopedia of DNA
Elements (ENCODE)7 and the NIH Roadmap Epigenomics
Consortia6, we provide deeper insights into the epigenomic reg-
ulation of gene expression in human hippocampal tissue. Speci-
fically, the map of hippocampal meQTLs/eQTLs will improve the
functional interpretation of SNPs associated with brain disorders.

Results
Study design of meQTL and eQTL analyses. To explore the cis-
regulatory effects of SNPs on DNA methylation and gene
expression, we performed genome-wide mapping of cis-acting
meQTLs/eQTLs and correlations of CpG methylation and mRNA
expression in human hippocampal tissue from 110 European TLE
patients (Supplementary Table 1). After stringent array and SNP
quality control, 536,041 SNPs pruned by linkage disequilibrium
(LD, pair-wise r2 < 0.8 within a window of 50 SNPs), 344,106
CpG probes and 15,708 3′-RNA expression probes were included
in the QTL study. We performed cis-meQTL/eQTL analyses
within a cis-window of ±500 kb between SNP genotypes and
quantitative methylation rate (β-value) of CpGs or 3′-RNA
expression levels, using a linear regression model implemented in
Matrix eQTL28. We corrected for gender, age at surgery as well as
the proportion of neuronal cells, and adjusted by principal
components for population stratification, batch effects and for
hidden confounders (see Methods). For cis-QTL analyses, we
chose a false discovery rate (FDR) of 1%. CpGs and 3′-transcripts
with at least one significantly associated SNP (FDR of 1%) were
considered as meQTL or eQTL, respectively. The study power
was sufficient to detect cis-acting hippocampal QTL-SNPs that
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Fig. 1 DNA methylation in context of genetic determination. a Distribution of the degree of methylation (β-value) of CpGs. The 14,118 meQTL-CpG sites
display a rather intermediate distribution of their median β-values (red) compared to the bimodal distribution observed for all 344,106 CpG sites (black). b
The relationship of explained variance R2 to the genomic distance of 14,118 meQTL-SNPs and their associated CpG site
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explained >10% of the variance of CpG methylation, and >16%
of the variance in gene expression, respectively.

Cis-meQTL analyses. For an FDR of 1% (P< 9.8 × 10−6), cis-
meQTL analysis identified 66,970 significant SNP-CpG methy-
lation associations at 14,118 CpG sites (Supplementary Data 1).
The median β-values across all 344k CpGs displayed a bimodal
distribution reflecting an excess of either completely methylated
or unmethylated CpGs, whereas the hippocampal cis-meQTL-
CpGs showed a rather unimodal and intermediate distribution
with a prominent peak at a β-value of 0.86 (Fig. 1a). The median
distance between the meQTL-CpGs and the most significantly
associated SNP was 11.7 kb (IQR= 3.2–36.7 kb) (Fig. 1b). For

the most significantly associated cis-meQTL SNP-CpG pairs,
we observed a median β-value of 0.65 (IQR= 0.40–0.82) and
a median methylation change of 3.4% (Interquartile Range
(IQR) = 2.0–5.5%) per allele. SNP genotypic variation explained a
substantial proportion of the methylation variance ranging from
10.8 to 84.9% (median = 24.0%; IQR= 19.1–34.2%). Remarkably,
the proportion of variance explained by cell-type heterogeneity
was modest (~5%, range: 0–54%) and relatively low for the age-
at-sampling (~3%, range: 0–39%) and gender (~1%, range:
0–31%), respectively (Supplementary Data 1). Notably, 9375
(66.4%) of cis-meQTL-CpGs resided in 4,905 ENSEMBL-73
genes. Overall, 3578 (25.3%) of the hippocampal meQTL-CpGs
were located within or nearby 1,140 (73.0%) out of 1561 candi-
date genes recently implicated for neurodevelopmental disorders
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based on literature and database queries29. Several of these high-
ranking candidate genes (e.g., ADARB2, GABRB3/GABRA5,
HDAC4, NRXN1, RBFOX3, RIMBP2, SLC2A1, and SLC6A1) were
covered by more than one cis-meQTL (Fig. 2; Supplementary
Data 1). To facilitate the selection of accessible epigenetic bio-
markers, we performed cis-meQTL analysis of the 14,118 hip-
pocampal meQTL-CpGs in DNA from whole blood cells of 494
German population controls. We observed a moderate correlation
of the estimated meQTL effect sizes between the brain and blood
samples (r= 0.33). However, about 66% of the hippocampal cis-
meQTL-CpGs displayed significant SNP-CpG methylation asso-
ciations (FDR of 1%) with similar effect sizes in whole blood cells
(Supplementary Data 1).

Co-localization of cis-meQTLs with regulatory genomic motifs.
To explore the effects of CpG methylation on hippocampal
transcription activity30,31, we examined whether hippocampal cis-
meQTL-CpGs were co-localized with epigenomic marks anno-
tated by the ENCODE and the Roadmap Epigenomics Projects6,7.
We interrogated 189 epigenomic marks comprising six hippo-
campal histone marks and 15 hippocampal chromatin states from
Roadmap6, 161 transcription factor-binding sites (TFBS), three
DNAse I hypersensitivity tracks7,32, three UCSC CpG island
(CGI) definitions and regions of intermediate methylation in
brain33. Given distinct differences of the CpG methylation states
across the Roadmap 15-core chromatin states6 (Supplementary
Figs. 1 and 2), we compared the frequency of hippocampal cis-
meQTL-CpGs within epigenomic marks with those obtained in
98,826 non-meQTL control-CpGs matched for median β-values
(FDR> 10%, seven-fold match). We found strong relative
enrichments of cis-meQTL-CpGs in the flanking genomic regions
of active promoters (TssAFlnk state, OR= 1.35, P= 1.44 × 10−27),
marked by an enrichment in chromatin immunoprecipitation
sequencing (ChIP-seq) peaks of the promoter-associated histone
mark H3K4me3 (OR= 1.13, P= 6.85 × 10−12) and the enhancer-
associated H3K4me1 mark (OR= 1.15, P= 5.51 × 10−13)
(Table 1, Supplementary Data 2). Moreover, cis-meQTL-CpGs
were enriched at chromatin marks with repressed Polycomb
states (ReprPCWk state, OR= 1.19, P= 3.41 × 10−10) marked by
an enrichment in H3K27me3 (OR= 1.15, P= 2.14 × 10−14).
Otherwise, hippocampal cis-meQTL-CpGs were depleted in
actively transcribed regions (TX state, OR= 0.60, P= 1.81 × 10
−31) corresponding with a depletion in H3K36me3 (OR= 0.81, P

= 2.96 × 10−26). We observed a strong over-representation of cis-
meQTL-CpGs in CGI shores (OR= 1.20, P= 4.04 × 10−20) and a
depletion in neighboring shelves (OR= 0.75, P= 3.21 × 10−20). A
strong enrichment (OR= 1.84, P= 1.26 × 10−74) of cis-meQTL-
CpGs was found in 6.654 regions of intermediate DNA methy-
lation, which encodes a conserved signature of genome regula-
tion33. Notably, hippocampal cis-meQTL-CpGs were significantly
enriched in the ChIP-seq peaks of the TFBS for CTCF (OR=
1.33, P= 8.3 × 10−31) (Table 1), whereas significant depletions
were observed for 35 out of 161 ENCODE transcription factors
interrogated in this study (Supplementary Data 2).

Cis-eQTL analyses. The cis-eQTL analysis on quantile normal-
ized expression values was done in a cis-window of ±500 kb using
the linear regression model of Matrix eQTL. The eQTL analysis
led to 1337 significant SNP-3′-RNA expression associations (FDR
of 1%, P< 4.48 × 10−6) of 302 expression probes of 288 genes
(Supplementary Data 3). The median genomic distance was
35.8 kb (IQR= 13.2–76.2 kb) between the SNP and the 5′-TSS of
the corresponding gene. The eQTL-SNPs explained proportions
of the expression variance ranging from 16.0–79.7% (median=
25.4%; IQR= 20.1–32.3%). Notably, the proportion of variance
explained by cell-type heterogeneity was modest (~4%, range:
0–33%) and relatively low for the age-at-sampling (~2%, range:
0–16%) and gender (~1.4%, range: 0–15%), respectively (Sup-
plementary Data 3).

Correlation of CpG methylation and mRNA expression. For an
FDR of 1%, we detected 80 cis-related correlations of CpG
methylation and RNA expression, comprising 73 CpGs and 38
mRNA probes, annotating to 34 genes (Supplementary Data 4).
The genomic distance between the mRNA transcription start site
and CpG site varied between 46 bp and 487.5 kb with a median
distance of 11.2 kb (IQR= 0.6–24.6 kb). The CpG methylation
levels explained proportions of variance of mRNA expression
ranging from 22.3 to 64.2% (median = 27.8%; IQR= 24.7–32.5%).
Overall, 70% of the methylation-correlated mRNA expressions
were negatively correlated. Particularly, the methylation levels of
30 CpGs in the 5′-regulatory gene regions were predominantly
negative correlated with gene expression (OR= 0.267, P= 0.025).
The majority (50 out of 80) of methylation-correlated mRNA
expressions were based on coincidental eQTLs and meQTLs, of

Table 1 Enrichments of 14,118 cis-meQTL-CpGs in regulatory genomic elements

Annotation Ratio meQTL (%) Ratio non-meQTL (%) P-value q-value OR (95% CI)

Roadmap E071 flanking active TSS 13.2 10.1 1.4 × 10−27 2.7 × 10−25 1.353 (1.282–1.427)
Roadmap E071 weak repr. PolyComb 12.5 10.7 3.4 × 10−10 6.5 × 10−08 1.191 (1.128–1.257)

Roadmap E071 H3K27me3 49.5 46.0 2.1 × 10−14 4.1 × 10−12 1.148 (1.108–1.189)
Roadmap E071 H3K4me1 72.1 69.1 5.5 × 10−13 1.0 × 10−10 1.154 (1.109–1.200)
Roadmap E071 H3K4me3 59.1 56.1 6.9 × 10−12 1.3 × 10−09 1.133 (1.093–1.175)

UCSC CGI shore 31.3 27.6 4.0 × 10−20 7.6 × 10−18 1.198 (1.153–1.245)

Brain intermediate methylation regions 9.8 5.6 1.3 × 10−74 2.4 × 10−72 1.835 (1.724–1.953)

Duke DNase I HS cerebellum 30.9 28.4 8.4 × 10−10 1.6 × 10−07 1.128 (1.085–1.172)
Duke DNase I HS cerebrum frontal 41.7 39.7 4.6 × 10−06 8.7 × 10−04 1.087 (1.049–1.127)

Encode (Tfbs) CTCF 17.3 13.6 8.3 × 10−31 1.6 × 10−28 1.329 (1.267–1.394)
Encode (Tfbs) RAD21 8.4 7.5 5.7 × 10−05 1.1 × 10−02 1.142 (1.071–1.218)
Encode (Tfbs) SMC3 5.2 4.5 1.9 × 10−04 3.7 × 10−02 1.167 (1.076–1.265)
Encode (Tfbs) POLR2A 30.8 29.2 2.1 × 10−04 4.0 × 10−02 1.075 (1.035–1.117)

Co-localization of cis-meQTL-CpGs to genomic annotations of 189 regulatory elements were compared with control-CpG sites matched for β-value (n= 98,826). Significant enrichments after Bonferroni
correction (q-value) are shown
OR odds ratio with 95% confidence interval
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which 35 pairs of QTL-SNPs were in close LD (r2> 0.4) indi-
cating a shared genetic driver (Fig. 3).

LD overlap of cis-eQTL- and meQTL-SNPs in brain tissue. We
tested for a clumping-based LD relationship between hippo-
campal cis-meQTL-SNPs with the present set of 1223 hippo-
campal cis-eQTL-SNPs as well as 16,791 cis-eQTL-SNPs
identified in 10 adult brain regions recently published by
Ramasamy and co-workers18. Applying the clumping procedure
of PLINK34 (LD pruning of SNPs with pair-wise r2< 0.25 within
250 kb, maintaining the most significant QTL-SNP), we created a
set of 10,890 quasi LD-independent hippocampal cis-meQTL-
SNPs (FDR of 1%) and a set of quasi LD-independent cis-eQTL-
SNPs from each eQTL data set (FDR of 1%). For the clumping-
based enrichment analysis, we counted the number of 10,890
quasi LD-independent hippocampal cis-meQTL-SNPs which
showed pair-wise LD (r2> 0.25 within 1Mb) with one of the
quasi LD-independent cis-eQTL-SNPs. Likewise, we randomly
generated 106 sets of 10,890 MAF-matched control-SNPs from
92,308 quasi LD-independent non-meQTL control-SNPs (FDR>
10%). Empirical significance for enrichment was determined by
counting the number of control-SNP sets that reached or excee-
ded the number of hippocampal cis-meQTL-SNPs showing LD
(pair-wise r2> 0.25 within 1Mb) with the sets of quasi LD-
independent cis-eQTL-SNPs. We found significant (empirical P
< 10−6) relative enrichments of 6.70 of hippocampal cis-meQTL-
SNPs in the set of hippocampal cis-eQTL-SNPs and a 3.62-fold
enrichment in the set of brain cis-eQTL-SNPs obtained from
Ramasamy et al.18 (Table 2).

LD overlap of schizophrenia-risk-SNPs with cis-QTL-SNPs. We
investigated whether cis-acting hippocampal meQTL- and eQTL-
SNPs may contribute to 108 risk-loci of schizophrenia recently
reported in a large-scale GWAS including 36,989 subjects with
schizophrenia and 113,075 population controls35. We evaluated
two sets of schizophrenia-associated SNPs based on two different
significance thresholds of P< 5 × 10−5 and P< 5 × 10−8. We
applied the same PLINK clumping procedure described above to
assess the number of LD-correlated SNPs between the quasi LD-
independent GWAS SNPs and the quasi LD-independent cis-
meQTL- and cis-eQTL-SNPs (Table 3). Empirical significance for
enrichment was determined based on 106 randomly generated
sets of MAF-matched control-SNPs from the quasi LD-
independent non-QTL-SNPs (FDR of 10%, n= 97,471). We

found a significant enrichment of cis-meQTL-SNPs (relative
enrichment: 2.18–2.79) and cis-eQTL-SNPs (relative enrichment:
3.60–7.01) with the schizophrenia-associated SNPs (Table 3).

Epigenomic profiling of hippocampal QTL-SNPs. To prioritize
regulatory, deleterious, and disease-relevant QTL-SNPs among
numerous LD-correlated QTL-SNPs, we carried out epigenomic
profiling of hippocampal cis-meQTL-SNPs (n= 229,235 for an
FDR of 0.001) and cis-eQTL-SNPs (n= 16,635 for an FDR of
0.01) derived from the imputed data set of 3,239,626 autosomal
SNPs (MAF> 5%). Therefore, we estimated the relative patho-
genicity of hippocampal QTL-SNPs using the Combined Anno-
tation Dependent Depletion (CADD v1.3) framework, which
integrates annotations across a wide range of functional cate-
gories into a single quantitative score (CADD-Phred score) for
each SNP36. At a threshold of a CADD-Phred score >5, we
selected 53,409 meQTL-SNPs at 6226 unique CpG sites (Sup-
plementary Data 5) and 3,899 eQTL-SNPs for 304 unique RNA
transcripts (Supplementary Data 6). To facilitate the functional
interpretation of the CADD5 QTL-SNPs, we implemented
genomic annotations using the Ensemble Variant Effect Predictor
(VEP)37 and hippocampus-related epigenetic annotations for the
Roadmap ChromHMM 15-states and relevant histone marks.
Notably, 997 CADD5 meQTL-SNPs and 42 CADD5 eQTL-SNPs
directly matched GWAS risk-SNPs from the GWASdb v238 cat-
alog at a significance level of P< 5.0 × 10−8 (Supplementary
Data 5 and 6).

Considering only the QTL-SNPs with the highest CADD score
per CpG (best-CADD5 meQTL-SNPs: n= 6226; mean CADD
score: 12.73, s.d.= 5.32) or RNA transcript (best-CADD5 eQTL-
SNPs: n= 304; mean CADD score: 14.06, s.d.= 5.19), the
distribution of the functional annotations of the CADD top-
ranked meQTL-SNPs and eQTL-SNPs displayed a predominant
proportion of QTL-SNPs with genic localizations. Remarkably, a
considerable proportion of the best-CADD5 meQTL-missense
SNPs create/abolish CpG sites and could be a potential target for
allele-specific methylation39,40. More specifically, we explored
potentially regulatory effects of best-CADD5 QTL-SNPs due to
their allelic alterations of TFBS affinities predicted by the
SNP2TFBS database41. In total, 857 out of 6226 best-CADD5
meQTL-SNPs and 44 out of 304 best-CADD5 eQTL-SNPs were
predicted to alter TFBSs and the binding affinity of at least one
transcription factors (Supplementary Datas 5 and 6). We
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cg21832243 in the promoter flanking region (explained variance: 33.5%) is based on b a cis-eQTL (ILMN_1774949; P= 1.44 × 10−22, explained variance:
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observed a four-fold enrichment of CTCF-binding sites that
overlap with the best-CADD5 meQTL-SNPs (P= 1.81 × 10−11).

Discussion
Dysfunction of the hippocampal formation and its interaction
with the prefrontal cortex plays an important role in neurobio-
logical pathways implicated in a wide variety of human brain
disorders26,27. The primary aim of our study was to generate
genome-wide catalogs of cis-regulatory meQTLs and eQTLs in
human hippocampal tissue and to explore the functional impact
of cis-meQTL-CpGs and cis-meQTL/eQTL-SNPs on DNA
methylation and gene expression. Here we present comprehensive
lists of hippocampal cis-meQTLs at 14,118 unique CpG sites
(Supplementary Data 1) and hippocampal cis-eQTLs for 302 3′-
RNA probes annotating to 288 genes (Supplementary Data 3).
We also provide cis-meQTL/eQTL results for the complete set of
3,239,626 imputed SNPs (accessible online: https://uni-bonn.
sciebo.de/index.php/s/Nnj2o9GKCmZI2pn). Concomitantly, we
carried out epigenomic profiling of hippocampal QTL-SNPs to
explore their cis-regulatory effects on gene expression and to
prioritize pathogenic regulatory SNPs at genetic risk-loci of
common brain disorders (Supplementary Data 5 and 6). Besides
known rare deleterious coding mutations and structural genomic
variations, cis-regulatory SNPs affecting hippocampal gene
expression may extend the allelic mutation spectrum of brain
disorders. Given that rare causal deleterious gene mutations act
on a strong polygenic background and the substantial impact of
eQTL-SNPs on tissue- and cell type-specific gene expression,
compound heterozygosity of rare loss-of-function mutations and
common regulatory cis-eQTL-SNP alleles lowering gene expres-
sion could synergistically aggravate haploinsufficiency of genes
causing brain disorders. The compound recessive mode of action
may explain the remarkable phenotypic variability among carriers
of loss-of-function gene mutations and could account for a
relevant proportion of the missing heritability.

The present catalogs of cis-acting meQTLs and eQTLs were
generated from fresh-frozen hippocampus biopsies, whereas the
majority of previous studies used post-mortem specimens.
Notably, hippocampus biopsies from TLE patients frequently
show neuropathological alterations with neuronal cell loss and
gliosis. Thus, it is of critical relevance for QTL analyses to correct
for confounding factors such as cell-type heterogeneity and other
known or unidentified confounders arising from the TLE-related
pathology. To correct for cell-type heterogeneity, we included the
individual neuronal proportion42 in our linear regression model
for QTL analysis. For the cis-acting hippocampal QTLs (FDR of
1%), the linear regression model revealed a strong impact of SNPs
on the variance of CpG methylation and gene expression (average
explained variance: 28%), whereas the proportion of variance
explained by cell-type heterogeneity was modest (~5%) and

relatively low for the age-at-sampling (~2–3%) and gender (~1%),
respectively (Supplementary Datas 1 and 3). With regard to the
wide range of effects attributable to these covariates for each
probe-set, we provide the estimated proportion of explained
variance of each covariate for each single probe-set (Supple-
mentary Data 1 and 3). This information allows distinguishing
probes, for which the CpG methylation or gene expression states
are strongly influenced by the covariate of interest. We also
applied an independent surrogate variable analysis (ISVA)43-
based adjustment to assess whether our supervised linear model
may have missed relevant confounders. The variation covered by
the ISVs is mostly represented in at least one of our supervised
covariates and principal components (Supplementary Fig. 3).
Overall, these analyses confirm the large majority (~88%) of cis-
acting meQTLs and eQTLs discovered by the supervised linear
model, and emphasize that our QTL findings are not adversely
affected by hidden confounding factors (Supplementary Data 1
and 3, Supplementary Fig. 3).

The epilepsy pathology underlying our hippocampal specimens
may selectively change methylation and transcription levels of
some CpGs and mRNAs. Evidence suggests that interactions
between genetic variation and environmental factors may con-
tribute to eQTLs and meQTLs44,45. However, conditional allele-
dependent shifts of mRNA transcription levels by gene-by-
environment (GxE) interaction seem to affect only a small frac-
tion (0.4%) of the investigated eQTL-genes and explain relatively
small proportions of variance of gene expression44. To explore the
potential influence of the epilepsy status on the present cis-
meQTLs/eQTLs, we estimated the proportion of variance of CpG
methylation and gene expression attributable to TLE-related
clinical factors (number of epileptic seizures, duration of epilepsy,
type of antiepileptic medication, and therapy outcome after epi-
lepsy surgery). Compared to the strong impact of SNP genotypes
on cis-acting hippocampal meQTLs and eQTLs (FDR of 1%;
average explained variance: 28%, range: 11–85%), the average
proportion of variance of CpG methylation and gene expression
explained by the investigated TLE-related factors was relatively
small varying between 0.4 and 1.1% (range per probe-set:
0.0–14.9%). Moreover, ISV-adjusted QTL analyses did not pro-
vide evidence for a substantial effect of epilepsy-related or
environmental factors. The epilepsy status thus appears to exert
only marginal effects on CpG methylation and gene expression in
the QTLs identified in the present study. However, the epilepsy
status or environmental factors may induce an upregulation of
the expression levels of at least some genes, possibly even in a
genotype-dependent manner, which may increase the power to
detect epilepsy trait-related eQTLs. This is supported by a cis-
eQTL study investigating hippocampus tissue derived from 22
TLE patients and 22 normal individuals, which demonstrated that
epilepsy-associated SNPs of an epilepsy GWAS meta-analysis46

were significantly more enriched with hippocampal cis-eQTLs of

Table 2 Linkage disequilibrium overlap of cis-eQTL-SNPs with cis-meQTL-SNPs

Source Hippocampal cis-eQTL-SNPs Brain cis-eQTLsa

Number of “clumped” cis-eQTL-SNPs 362 7961
eQTL-SNPs overlapping meQTL-SNPs 201/10,890 2196/10,890
Mean (eQTL-SNPs overlapping control-SNPs) 30.0/10,890 606.7/10,890
s.d. (eQTL-SNPs overlapping control-SNPs) 5.09 22.29
Error for the mean 0.010 0.044
Average enrichment 6.70 3.62
Empirical P-value <10−6 <10−6

Overlapping SNPs of the cis-eQTL-SNPs and cis-meQTL-SNPs were identified by the linkage disequilibrium (LD) clumping procedure implemented in PLINK34 (SNP pair-wise r2> 0.25 within 1 Mb).
Empirical P-values were derived on the basis of 1,000,000 simulated sets of LD-clumped control-SNPs (non-QTL-SNPs with FDR> 10%; LD clumping: SNP pair-wise r2< 0.25 within 250 kb with
reference to the most significantly associated SNP) matched for allele frequency
aBrain cis-eQTL-SNPs were obtained from a recent exon-level eQTL study from 10 adult brain regions18
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TLE patients than of normal individuals47. In line with this
interpretation, we identified a hippocampal cis-eQTL for the
protocadherin PCDH7 gene (ILMN_1670383, nominal P=
6.55 × 10−7, R2= 21.1%), which is expressed in thalamocortical
circuits and the hippocampus. The eQTL-SNP rs7674790
(chr4:31149277, hg19, MAF= 34%) is located in the 3′-region of
the PCDH7 gene and in close LD (r2 = 0.90) with the epilepsy
GWAS risk-SNP rs28498976 (chr4:31151357; P= 5.44 × 10−9)46.
Notably, the PCDH7 cis-eQTL identified in hippocampal biopsies
of patients with pharmacoresistant TLE has not been reported in
current brain cis-eQTL catalogs9,16,18,47.

Two recent studies reported cis-meQTL maps in post-mortem
brain specimens, using the HumanMethylation450 array20,21. For
an FDR of 1%, Jaffe and co-workers21 identified cis-meQTLs at
138,962 unique CpG sites in tissue from prefrontal cortex of 258
adult non-psychiatric individuals. In total, 91.3% (12,894/14,118)
of the present hippocampal cis-meQTLs were also found in the
set of prefrontal cortex cis-meQTLs. For a conservative
Bonferroni-corrected significance threshold, Hannon et al.20

reported cis-meQTLs at 3243 unique CpG sites in tissue from 166
human fetal brains. Using adult post-mortem tissue from three
distinct brain regions (prefrontal cortex, striatum, cerebellum),
the majority (83.4%) of fetal brain meQTLs were present in at
least one of the investigated adult brain regions and the meQTL
effect sizes were highly correlated. For a subset of 1390 fetal brain
meQTL-CpGs, which were also investigated in the present study,
we observed an overlap of 81.0% with adult hippocampal
meQTLs. Taken together, these findings implicate that the
majority of hippocampal meQTLs are conserved across adult
brain regions and most of them are likely to be developmentally
stable. The considerable overlap of brain meQTLs indicates a high
replicability and validity of meQTLs in human brain tissue
(Supplementary Data 1). In addition, we found that 66.6% of
hippocampal cis-meQTL-CpGs represent also meQTLs in whole
blood cells (Supplementary Data 1). Likewise, we observed a 55%
overlap of hippocampal eQTL-genes with corresponding eQTLs
in whole blood cells, based on the Genotype-Tissue Expression
(GTEx) database9 (Supplementary Data 3). Obviously, our
screening procedure will preferentially detect those QTLs which
display strong allelic effects on CpG methylation and gene
expression across the bulk of various hippocampal cell-types.
Therefore, it is not surprising that many of the cis-meQTLs/
eQTLs detected in hippocampal bulk tissue are not cell type- or
tissue-specific. Future studies in single cells will provide deeper
insights into cell-type specificity of QTLs in normal and disease-
related brain tissue48.

Collectively, hippocampal cis-meQTL-CpGs were annotated to
4905 ENSEMBL-73 genes and were located within or nearby 1140
out of 1561 candidate genes recently implicated in neurodeve-
lopmental disorders29. To deepen insights into basic regulatory
mechanisms of the transcriptional activity in the human hippo-
campus, we examined whether cis-meQTL-CpGs were co-
localized to 189 functional regulatory epigenetic elements anno-
tated in the adult human hippocampus6,7,32,33 (Table 1, Supple-
mentary Data 2). We tested the hypothesis that the cis-meQTL-
CpG itself influences regulatory effects of hippocampal epigenetic
marks30,31. We found strong enrichment of cis-meQTL-CpGs in
6,654 genomic regions characterized by an intermediate methy-
lation state, which has been implicated to encode a conserved
epigenomic signature of gene regulation and exon usage33. Hip-
pocampal cis-meQTL-CpGs were enriched in genomic regions
flanking active promoters (TssAFlnk) marked by the promoter-
associated histone modification H3K4me3 and the enhancer-
associated modification H3K4me1 (Table 1, Supplementary
Data 2). Partially deviating from our findings, Hannon and co-
workers reported an enrichment of fetal brain cis-meQTLs for
repressive histone modifications (H3K9me3, H3K27me3) and a
depletion for histone modifications associated with active tran-
scription (H3K4me1, H3K36me3)20. The deviating chromatin
signatures may mainly reflect differences of developmental stages
between the fetal brain20 and adult hippocampus tissue in context
with the selection of Roadmap reference data sets fitting to the
tissue source and developmental stage. Consistent with results
from fetal brain cis-meQTLs20, we observed an enrichment of cis-
meQTL-CpGs in the ChIP-seq peaks of the TFBS for CTCF, a
highly conserved zinc finger protein that acts as an important
transcriptional activator by anchoring other transcription fac-
tors13, but also acts as a repressive insulator by blocking
enhancer–promoter interactions49. The affinity of CTCF-binding
motifs has been shown to be sensitive to CpG methylation30,50.
Altogether, these findings support the hypothesis that cis-
meQTLs may be involved in CTCF-mediated enhancer–promoter
interactions in genomic regions with active chromatin states13,49.

We identified cis-eQTLs for 302 3′-RNA expression probes
annotating to 288 genes (Supplementary Data 3). A recent meta-
analysis across five eQTL studies of post-mortem human frontal
cortex (n= 424) reported replicable cortical eQTLs (FDR of 5%)
for 158 (55%) out of the 288 hippocampal cis-eQTL-genes
identified in the present study16. Compared with gene-level
eQTLs derived from ten brain regions9, we found an overlap for
193 (67%) out of 288 hippocampal eQTL-genes, but only a
moderate replication rate of 89 (31%) out of 288 hippocampal

Table 3 Linkage disequilibrium overlap of schizophrenia-associated SNPs with hippocampal cis-meQTL-/eQTL-SNPs

Hippocampal cis-QTL meQTL eQTL
Number of ‘clumped’ cis-QTL-SNPs 10,890 362

GWAS Trait Schizophrenia Schizophrenia
GWAS P-value threshold P< 5 × 10−5 P< 5 × 10−8 P< 5 × 10−5 P< 5 × 10−8

Number of ‘clumped’ GWAS SNPs 1806 184 1806 184

QTL-SNPs overlapping GWAS SNPs 352 51 24 6
Mean (QTL control-SNPs overlapping GWAS SNPs) 161.43 18.28 6.66 0.86
s.d. (QTL control-SNPs overlapping GWAS SNPs) 11.72 3.96 2.55 0.92
Error for the mean 0.023 0.008 0.005 0.002
Average enrichment 2.18 2.79 3.60 7.01
Empirical P-value <10−6 <10−6 <10−6 2.25 × 10−4

Two significance thresholds were used to select risk-SNPs from a recent large-scale GWAS of schizophrenia35. Overlapping SNPs of the cis-QTL-SNPs and GWAS SNPs were identified by the linkage
disequilibrium (LD) clumping procedure implemented in PLINK34 (SNP pair-wise r2> 0.25 within 250 kb). Empirical P-values were derived on the basis of 1,000,000 simulated sets of LD-clumped
control-SNPs (non-QTL-SNPs with FDR> 10%; LD clumping: SNP pair-wise r2< 0.25 within 250 kb with reference to the most significantly associated SNP) matched for allele frequency
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eQTL-genes when the comparison was restricted to hippocampal
tissue (Supplementary Data 4). In addition, 157 (54.5%) out of
288 hippocampal eQTLs were also eQTLs in whole blood cells in
the GTEx eQTL database. This substantial overlap implies that
many regulatory SNPs exert more ubiquitous effects on gene
expression independent of the tissue source. Correlation analysis
between cis-acting hippocampal CpG methylation and 3′-RNA
expression revealed 34 genes with methylation-driven gene
expression (Supplementary Data 4). Correlation of CpG methy-
lation and gene expression frequently occurred in coincidence of
cis-acting hippocampal meQTL and eQTL pairs that often share
the same genetic driver SNP (Supplementary Data 4; Fig. 3).
Overall, the number of methylation-driven gene expressions
identified in our study is remarkably low considering that we have
found hippocampal cis-meQTL-CpGs at 4905 ENSEMBL-73
genes. Of note, the HumanHT-12 v3 Expression BeadChip
employed in this study detects gene-level expression signals. A
recent eQTL study of 10 brain regions using the Affymetrix
Human Exon 1.0 ST array identified cis-eQTLs (FDR of 1%) for
8573 transcript IDs and 21,617 expression IDs, demonstrating
that only 29.6–39.2% of the identified cis-eQTLs were reflected in
a gene-level signal18. Accordingly, the number of cis-eQTLs and
methylation-expression correlations should be much higher at the
exon level relative to the gene level. Considering that we have
investigated only 1.2% of 28 million CpG sites in the human
genome, the identified correlations likely reflect only a small
proportion of the real number of methylation-driven gene
expressions. To further explore a putative shared genetic control
of co-localized cis-meQTLs and cis-eQTLs, we tested for an LD-
based enrichment of the hippocampal cis-meQTL-SNPs in the
present set of hippocampal cis-eQTL-SNPs as well as in exon-
level cis-eQTL-SNPs identified in 10 adult brain regions pub-
lished by Ramasamy et al.18. We found a 6.70-fold enrichment of
the hippocampal cis-meQTL-SNPs for the set of hippocampal cis-
eQTL-SNPs and a 3.62-fold enrichment for the set of exon-level
brain cis-eQTL-SNPs (Table 2).

To date, the identification of causative SNPs explaining GWAS
risk-loci is still a major challenge. To explore the potential impact
of cis-acting hippocampal meQTLs and eQTLs in common
neuropsychiatric disorders, we performed enrichment analyses by
comparing an LD relationship of hippocampal cis-QTL-SNPs
with risk-SNPs identified by a recent large-scale GWAS of schi-
zophrenia35. We found a significant 2.2-fold enrichment of hip-
pocampal cis-meQTL-SNPs and 3.6-fold enrichment of cis-eQTL-
SNPs for schizophrenia-associated SNPs35. Our findings confirm
previous studies demonstrating an enrichment of fetal brain cis-
meQTL-SNPs and adult brain cis-eQTL-SNPs at GWAS risk-loci
of schizophrenia and bipolar disorder20,51,52 and support the
hypothesis that the majority of non-coding GWAS risk-SNPs for
brain disorders may affect gene expression3. The functional
consequences of cis-acting meQTLs on gene expression and dis-
ease susceptibility are a key topic of current research. Emerging
evidence suggests that the binding affinity of transcription factors
to their genomic binding sites may be influenced by sequence
variations as well as the methylation state of CpGs within the core
motifs of TFBSs30,31. Thus, causative hippocampal meQTL-CpGs
and meQTL-/eQTL-SNPs could affect the transcriptional activity
of adjacent genes by allelic alterations of TFBSs within brain-
specific regulatory elements, such as promoters, enhancers or
insulators10,13.

To dissect causal regulatory QTL-SNPs among LD-correlated
QTL-SNPs, we performed epigenomic profiling of cis-acting
hippocampal meQTL- and eQTL-SNPs (Supplementary Data 5
and 6; Supplementary Fig. 4). We prioritized potentially reg-
ulatory hippocampal QTL-SNPs by estimating their pathogenicity
with Ensemble VEP tool37 and CADD-Phred scores36 in context

of complementary hippocampus-related epigenetic annotations
for the Roadmap ChromHMM 15-states and relevant histone
marks. We implemented predictions of potentially regulatory
effects of QTL-SNPs due to genetic variation of TFBS affinities
using the SNP2TFBS database41. In total, 857 cis-meQTL-SNPs
and 44 cis-eQTL-SNPs with CADD-scores >5 were predicted to
alter TFBSs (Supplementary Datas 5 and 6). Consistent with an
enrichment of cis-meQTL-CpGs in the ChIP-seq peaks of CTCF,
we found a four-fold enrichment of CTCF binding sites over-
lapping with the best-CADD5 meQTL-SNPs (P= 1.81 × 10−11).
A considerable proportion of the best-CADD5 meQTL-SNPs
represents deleterious coding SNPs that also create/abolish CpG
sites. SNPs affecting CpG sites account for up to 20% of common
SNPs in human genome39,40,53, and were found to be significantly
enriched in eQTLs and in trait-associated SNPs53. The potentially
methylation-sensitive hippocampal QTL-SNPs might exert
meaningful susceptibility effects of trait-associated SNPs. Notably,
997 CADD5 meQTL-SNPs and 42 CADD5 eQTL-SNPs directly
matched GWAS trait-SNPs from the GWASdb v2 catalog38 at a
significance level of P< 5.0 × 10−8 (Supplementary Data 5 and 6).

In summary, our catalogs of cis-acting hippocampal meQTLs
and eQTLs provide a valuable resource for the scientific com-
munity to identify genetic drivers of epigenetic and transcrip-
tional variation in the human hippocampus and will deepen our
insights into neurodevelopmental processes and neurobiological
pathways involved in brain disorders. The majority of these QTLs
appear to be conserved across brain regions and developmentally
stable. More than 50% of hippocampal cis-meQTLs and cis-
eQTLs are also detected in blood cells and could be used as easily
accessible epigenetic biomarkers. The regulatory influence of
SNPs on hippocampal CpG methylation and gene expression will
inform the interpretation of GWASs and epigenome-wide asso-
ciation studies of brain disorders. Epigenomic profiling of hip-
pocampal QTL-SNPs and meQTL-CpGs and their predicted
alteration of TFBSs within brain- and cell type-specific promoters
and enhancers will facilitate the dissection of causal regulatory
SNPs/CpGs at GWAS risk-loci of brain disorders and will provide
valuable functional hints for their leading molecular pathways.
The currently available catalogs of brain eQTLs and meQTLs are
incomplete and emphasize the need for larger sample sizes of
specimens from diverse brain regions in context of various neu-
rodevelopmental stages and disease states.

Methods
Study participants and surgical specimens. Biopsies of hippocampal tissue from
110 European patients with chronic pharmacoresistant temporal lobe epilepsy
(TLE) were collected in the Epilepsy Surgery Program at Bonn University. All
epilepsy patients were medically resistant and underwent surgical removal after
standardized presurgical evaluation to achieve seizure control54. The clinical
parameters of the TLE patients (58 males, 52 females; range of age at seizure onset:
1 to 67 years, average age: 13.1) are summarized in Supplementary Table 1. For
each TLE patient, array-based SNP genotyping, gene expression, and methylation
profiling were performed in hippocampal brain tissue specimens. Informed and
written consent was obtained from all patients. Procedures were carried out in
accordance with the Declaration of Helsinki and were approved by the Ethics
Committee of the University of Bonn Medical Center (No. 360/12).

Fresh-frozen human hippocampal segments had been surgically removed from
identical regions of the hippocampus and were prepared as tissue-slices at cryostat-
conditions. All fresh-frozen hippocampal segments were analyzed by an
experienced neuropathologist using international standards and a diagnostic
classification was established55,56. The majority (>65%) of the hippocampal
specimens displayed Ammon’s horn sclerosis. In a smaller proportion of
hippocampal specimens, lesional alterations such as cortical dysplasia or tumors
were diagnosed. For the extraction of genomic DNA and RNA, we used up to five
tissue sections with a thickness of 20 μm. Isolation of total DNA and RNA was
conducted using the AllPrep DNA/RNA Micro Kit (Qiagen, Hilden, Germany)
using the manufacturer’s recommendations. Quality control of total RNA was
monitored by analysis with RNA 6000 nano lab chips on a BioAnalyzer 2100
(Agilent Technologies, Waldbronn, Germany). All used RNA samples showed
intact 28S and 18S ribosomal RNA signals and a RNA integrity number of ≥8.
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SNP genotyping and imputation. SNP genotyping of the 110 genomic DNA
samples was performed using the Illumina Human660W SNP array (Illumina, San
Diego, CA, USA). SNPs were annotated according to NCBI build 37.2 using the
bead pool manifest Human660W-Quad_v1_H. In total, 508k autosomal SNPs were
chosen for imputation based on the following quality control metrics: SNP call rate
>97%, minor allele frequency (MAF) > 3% and Hardy–Weinberg Equilibrium
(HWE) P> 10−6. Pre-phasing was performed using the SHAPEITv2 workflow57.
Imputation was conducted using IMPUTE258 using the provided 1000 Genomes
haplotypes Phase I integrated variant set release (v3, March 2012)59 with a MAF>
1%. The post-imputation SNP genotypes were filtered using SNPTESTv260 and
PLINK 1.934. IMPUTE2 genotype probabilities were converted into best-guess
genotype calls. Overall, 3,239,626 imputed autosomal SNPs were selected according
to the following inclusion criteria: info quality score >0.90, call rate >99%, MAF>
5%, and Hardy–Weinberg equilibrium P> 0.001. To diminish redundancy of
associations for the imputed SNP data set, an LD-based SNP pruning was carried
out (r2> 0.8 for a window size of 50 SNPs), resulting in 536,041 SNPs.

Preparation and filtering of gene expression profiles. The Illumina HumanHT-
12 v3 Expression BeadChip (Illumina, San Diego, CA, USA) was used to assess 3′-
mRNA transcription in mRNA samples of 110 hippocampus biopsies. Hybridi-
zation of biotin-UTP-labeled cRNA to the expression BeadChips was followed by
washing steps as described in the Illumina protocol. The BeadChips were scanned
using the Illumina iScan system and RNA expression raw data were quantile
normalized on probe level and without background correction using the Expres-
sion Module of the GenomeStudio software (v2011.1). The resulting signals were
log2 transformed after offset addition (+16). We excluded ambiguous cross-
hybridizing expression probes with more than one genomic location according to
Illumina and Ensembl v73 gene annotations, and probes containing a SNP with a
MAF> 1% according to 1000 Genome phase 159 and phase 361. We excluded
weakly expressed probes having an Illumina detection P> 0.05 in 95% of the
samples. After quality filtering, 15,708 expression probes were included in the
eQTL analysis.

Preparation and filtering of DNA methylation data. Bisulfite conversion of
genomic DNA was applied using Zymo EZ DNA Methylation kit (kit #D5001;
Zymo Research Corp., Irvine, CA, USA) according to the manufacturer’s protocol.
A total of 500 ng of bisulfite converted DNA was analyzed using the Illumina
Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA, USA)
according to the manufacturer’s instructions. The signal intensities of the images
were extracted using GenomeStudio version 2011.1 and the HumanMethyla-
tion450 manifest version 1 (Illumina, San Diego, CA, USA). Data normalization
and filtering was processed using the R-packages “wateRmelon”62 and “minfi”63

according to the protocol described by Lehne et al.64. In brief, intensities of six
probe-type subsets, defined by Infinium assay, color channel and M/U subtype for
Infinium type I probes were quantile normalized and intensities with a detection
P≥ 0.05 were set missing. To control for technical bias across samples, a PCA over
220 array control probes was performed. According to the distribution of the PC
variance proportions, the first six PCs were added as linear predictors to the
regression model. Quality filtering of 473,863 autosomal CpG probes was carried
out based on the following exclusion criteria: (i) detection P> 0.01 in at least 5% of
samples (n= 4333), (ii) less than three beat counts per probe in at least 5% of the
samples (n= 522), (iii) cross-hybridization of the CpG probe to more than one
genomic location (n= 29,978)65, (iv) SNP (MAF > 1%, 1000 Genome phase 159

and phase 361 data sets) containing CpG site or 50-mer CpG probes (n= 107,851),
and (v) CpGs without any SNP (LD-pruned SNP set) within the cis-flanking region
of ±500 kb (n= 96). After quality filtering, 344,106 CpGs were included in the
meQTL analysis.

Statistical quantitative trait loci analyses. For cis-meQTL analysis, we con-
firmed individual sample identity of the SNP and CpG methylation data sets based
on the genotypes of 65 CpG/SNP probes on the HumanMethylation450 array
compared with the SNP genotype calls assessed by the Illumina Human660W SNP
array. The eQTL and meQTL analyses were performed for an additive linear
regression model using the R package Matrix eQTL28. Given that the majority of
hippocampus biopsies showed neuropathological alterations with neuronal cell loss
and gliosis, the inter-sample adjustment for the neuronal proportion as well as
known and unidentified confounders is of critical relevance for QTL analyses. The
neuronal and glial proportion of each hippocampus specimen was calculated using
the CETS R package42. To design the model, we first build residuals of the
expression and methylation matrix (lm, stats R package) over the known con-
founders: neuronal proportion, age, and gender. Moreover, the first three Eigen-
strat66 PCs from SNP genotype data were included to control for ethnicity
differences. For the meQTL model, the six PCs from the 220 array control probes
were added to control for technical bias. Subsequent principal component analyses
(PCAs) on residuals were calculated using prcomb (stats R package). PCA for RNA
expression resulted in a variance proportion of 17.1% and 11.9% for the first two
principal components (PCs), respectively. PCA for DNA methylation revealed PCs
#1–#3 as an important unknown confounder accounting for 13.5% of variance.
These PCs have general impact on RNA expression and DNA methylation,

respectively. Matrix eQTL28 linear model eQTL analysis was performed using the
covariates: gender, age at surgery, neuronal proportion (known confounder), three
PCs for population stratification and two additional PCs as unknown confounder.
The cis-meQTL analysis was conducted using the covariates: gender, age of surgery,
neuronal proportion (known confounder), three PCs for population stratification,
six PCs for the adjustment of technical bias and three additional PCs as unknown
confounder. In addition, we extracted independent surrogate variables (ISVs) as an
alternative method of correction for heterogeneity and latent variables in QTL
analyses. We performed a surrogate variable analysis using ISVA43, gender as the
protected variable, fastICA for component extraction and an FDR threshold for
feature selection of 5%. Each time 13 ISVs for the methylation and expression
matrix, respectively, gender and the three Eigenstrat66 PCs for correction of ethnic
heterogeneity were used for the alternative ISV-adjusted QTL calculations using
Matrix eQTL. Cis-QTL analyses were carried out for SNP/probe pairs spanning
<500 kb. An FDR threshold of 1% was considered as significant. We did not
perform trans-QTL analyses due to the relatively small sample size resulting in an
insufficient power and the substantial impact of spurious trans-meQTL associa-
tions reflecting cross-hybridization of CpG probes to more than one genomic
localization65,67.

Correlation analysis of RNA expression and DNA methylation. Pearson cor-
relation between mRNA expression and CpG methylation states was calculated
using Matrix eQTL. Correlation analysis was performed in cis using a window size
of ±500 kb around the RNA expression probe. The Pearson coefficients of deter-
mination (R2-values) were calculated using R. To prevent side effects from con-
founding variables correlation was performed on confounder residuals. An FDR
threshold of 1% was considered as significant.

Enrichment analyses of meQTL-CpGs in epigenomic marks. To explore the
effects of CpG methylation on hippocampal transcription activity, we assessed the
co-localization of regulatory epigenomic marks and meQTL-CpG sites and com-
pared the number of hits with those obtained in non-meQTL control-CpG sites
(FDR of 10%). Given distinct differences of the CpG methylation states across the
Roadmap 15-chromatin states6 (Supplementary Figs. 1 and 2), the hippocampal
cis-meQTL-CpGs were matched with the set of control-CpGs for their mean β-
values. Therefore, mean β-values of each CpG were determined and assigned to 10
bins (β 0–0.1 to β 0.9–1). According to the subcategory counts for cis-meQTL-
CpGs, we performed random sampling without replacement in the control set.

For enrichment analysis, we used the Fisher exact test and selected five sets of
epigenomic marks (n= 189). We selected broad ChIP-seq peaks of six
hippocampus middle histone marks summarized in the Roadmap E071
annotation6: H3K4me1, H3K4me3, H3K9me3, H3K36me3, H3K27me3, and
H3K27ac. Additionally, the Chromatin states of the Roadmap core 15-state model
for hippocampus middle6, three brain-specific DNase I hypersensitivity tracks from
cerebellum, cerebrum frontal, and frontal cortex7,32, 161 transcription factor ChIP-
seq peaks from ENCODE68, the UCSC CpG islands (CGI) definitions CGI, CGI
shore (<2 kb flanking of CGI), and CGI shelf (2–4 kb flanking of CGI) and regions
of intermediate DNA methylation33.

Enrichment of QTL-SNPs with schizophrenia-associated SNPs. The enrichment
of cis-acting hippocampal meQTL-/eQTL-SNPs (FDR of 1%) in schizophrenia-
associated GWAS risk-SNPs35 (significance thresholds: P< 5 × 10−5 and P< 5 × 10
−8) was tested in comparison with MAF-matched control SNPs (FDR> 10%)
corresponding to the sets of meQTL-/eQTL-SNPs. Therefore, all SNPs were
extracted from the 1000 Genomes Project European SNP data set (phase 3, version
5)57. GWAS SNPs associated with schizophrenia were obtained from the Psy-
chiatric Genomics Consortium (PGC). SNPs located in the major histocompat-
ibility complex region (chr6:2,500,000–3,500,000) were excluded from the SNP
sets. In a first step, sets of quasi-independent SNPs were separately created for the
selected SNP sets, applying the PLINK clumping procedure34 (pair-wise LD
pruning of SNPs (r2< 0.25 within 250 kb) maintaining the most significant QTL-
SNP). Subsequently, we determined the number of LD overlapping (r2> 0.25
within 250 kb) SNPs between the set of quasi-independent GWAS SNPs and the
sets of cis-meQTL-/eQTL-SNPs, using the PLINK clumping procedure. Likewise,
we counted the number of overlapping GWAS SNPs for 106 randomly generated
sets of MAF-matched quasi LD-independent control SNPs. Empirical significance
for enrichment was determined by counting the number of control-SNP sets which
reached or exceeded the number of GWAS SNPs overlapping cis-acting hippo-
campal meQTL-/eQTL-SNPs.

Enrichment of eQTL variants in hippocampal meQTLs. The enrichment of
hippocampal cis-meQTLs (FDR of 1%) in eQTL-SNPs was assessed in comparison
with 106 simulated MAF-matched sets of control-SNPs as described before. Of
note, the PLINK clumping procedure for overlapping the hippocampal cis-meQTL-
SNPs with cis-eQTL-SNPs was based on an LD relationship of r2> 0.25 within a
window of 1Mb. Cis-eQTL-SNPs (FDR of 1%) were obtained from the present
hippocampal cis-eQTL data set and from a previous cis-eQTL study of 10 human
brain regions from 134 healthy European individuals, using the Affymetrix Human
Exon 1.0 ST array18.
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Epigenomic profiling of hippocampal QTL-SNPs. For the prioritization of
potentially regulatory hippocampal cis-QTL-SNPs, we selected 229,235 cis-
meQTL-SNPs with an FDR of 0.001 and 16,635 cis-eQTL-SNPs with an FDR of
0.01, which were derived from the QTL results of the imputed data set of 3,239,626
autosomal SNPs (MAF> 5%) to achieve a best possible SNP coverage of the QTL-
associated LD blocks. Next, we estimated the relative pathogenicity of hippocampal
cis-QTL-SNPs using the Combined Annotation Dependent Depletion (CADD
v1.3) framework36. At a threshold of a CADD-Phred score >5, we selected 53,409
cis-meQTL-SNPs at 6226 unique CpG sites and 3899 cis-eQTL-SNPs for 304
unique RNA transcripts for functional epigenomic profiling, using genomic
annotations from the Ensemble Variant Effect Predictor (VEP)37, and
hippocampus-related (E071) Roadmap Epigenomics6 annotations for
ChromHMM 15-state and histone marks, and the ENCODE68 transcription factor
ChIP-seq peaks of CTCF and POLR2A. Co-localization of hippocampal CADD5
cis-QTL-SNPs with TFBSs and allelic alterations of the binding affinities were
predicted by the SNP2TFBS database41. In addition, we matched overlapping
hippocampal CADD5 cis-QTL-SNPs with GWAS trait-SNPs from the GWASdb v2
catalog38 at a significance level of P< 10−5.

Data availability. Due to data protection issues, the raw data cannot be made
publically available. However, individual researchers may request to use the
data for specific projects on a collaborative basis. Inquiries should be made to
S.C., A.J.B. and T.S. The full results of the eQTL/meQTL study are available at:
https://uni-bonn.sciebo.de/index.php/s/Nnj2o9GKCmZI2pn
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