66 research outputs found
Object-guided Spatial Attention in Touch: Holding the Same Object with Both Hands Delays Attentional Selection
Abstract
Previous research has shown that attention to a specific location on a uniform visual object spreads throughout the entire object. Here we demonstrate that, similar to the visual system, spatial attention in touch can be object guided. We measured event-related brain potentials to tactile stimuli arising from objects held by observers' hands, when the hands were placed either near each other or far apart, holding two separate objects, or when they were far apart but holding a common object. Observers covertly oriented their attention to the left, to the right, or to both hands, following bilaterally presented tactile cues indicating likely tactile target location(s). Attentional modulations for tactile stimuli at attended compared to unattended locations were present in the time range of early somatosensory components only when the hands were far apart, but not when they were near. This was found to reflect enhanced somatosensory processing at attended locations rather than suppressed processing at unattended locations. Crucially, holding a common object with both hands delayed attentional selection, similar to when the hands were near. This shows that the proprioceptive distance effect on tactile attentional selection arises when distant event locations can be treated as separate and unconnected sources of tactile stimulation, but not when they form part of the same object. These findings suggest that, similar to visual attention, both space- and object-based attentional mechanisms can operate when we select between tactile events on our body surface.</jats:p
Recommended from our members
An ERP Investigation on Visuotactile Interactions in Peripersonal and Extrapersonal Space: Evidence for the Spatial Rule
The spatial rule of multisensory integration holds that cross-modal stimuli presented from the same spatial location result in enhanced multisensory integration. The present study investigated whether processing within the somatosensory cortex reflects the strength of cross-modal visuotactile interactions depending on the spatial relationship between visual and tactile stimuli. Visual stimuli were task-irrelevant and were presented simultaneously with touch in peripersonal and extrapersonal space, in the same or opposite hemispace with respect to the tactile stimuli. Participants directed their attention to one of their hands to detect infrequent tactile target stimuli at that hand while ignoring tactile targets at the unattended hand, all tactile nontarget stimuli, and any visual stimuli. Enhancement of ERPs recorded over and close to the somatosensory cortex was present as early as 100 msec after onset of stimuli (i.e., overlapping with the P100 component) when visual stimuli were presented next to the site of tactile stimulation (i.e., perihand space) compared to when these were presented at different locations in peripersonal or extrapersonal space. Therefore, this study provides electrophysiological support for the spatial rule of visual–tactile interaction in human participants. Importantly, these early cross-modal spatial effects occurred regardless of the locus of attention. In addition, and in line with previous research, we found attentional modulations of somatosensory processing only to be present in the time range of the N140 component and for longer latencies with an enhanced negativity for tactile stimuli at attended compared to unattended locations. Taken together, the pattern of the results from this study suggests that visuotactile spatial effects on somatosensory processing occur prior and independent of tactile–spatial attention
Recommended from our members
The attentive homunculus: ERP evidence for somatotopic allocation of attention in tactile search
Our brain constantly receives tactile information from the body’s surface. We often only become aware of this information when directing our attention towards the body. Here, we report a study investigating the behavioural and neural response when selecting a target amongst distractor vibrations presented simultaneously to several locations either across the hands or body. Comparable visual search studies have revealed the N2pc as the neural correlate of visual selective attention. Analogously, we describe an enhanced negativity contralateral to the tactile target side. This effect is strongest over somatosensory areas and lasts approximately 200 ms from the onset of the somatosensory N140 ERP component. Based on these characteristics we named this electrophysiological signature of attentional tactile target selection during tactile search the N140-central-contralateral (N140cc). Furthermore, we present supporting evince that the N140cc reflects attentional enhancement of target rather than suppression of distractor locations; the component was not reliably altered by distractor but rather by target location changes. Taken together, our findings present a novel electrophysiological marker of tactile search and show how attentional selection of touch operates by mainly enhancing task relevant locations within the somatosensory homunculus
The somatotopy of observed emotions
The ability to experience others’ emotional states is a key component in social interactions. Uniquely among sensorimotor regions, the somatosensory cortex (SCx) plays an especially important role in human emotion understanding. While distinct emotions are experienced in specific parts of the body, it remains unknown whether the SCx exhibits somatotopic activations to different emotional expressions. In the current study, we investigated if the affective response triggered by observing others’ emotional face expressions leads to differential activations in SCx. Participants performed a visual facial emotion discrimination task while we measured changes in SCx topographic EEG activity by tactually stimulating two body-parts representative of the upper and lower limbs, the finger and the toe respectively. The results of the study showed an emotion specific response in the finger SCx when observing angry as opposed to sad emotional expressions, after controlling for carry-over effects of visual evoked activity. This dissociation to observed emotions was not present in toe somatosensory responses. Our results suggest that somatotopic activations of the SCx to discrete emotions might play a crucial role in understanding others’ emotions
Recommended from our members
The Neurodynamic Decision Variable in Human Multi-Alternative Perceptual Choice
The neural dynamics underpinning binary perceptual decisions and their transformation into actions are well studied, but real-world decisions typically offer more than two response alternatives. How does decision-related evidence accumulation dynamically influence multiple action representations in humans? The heightened conservatism required in multiple compared to binary choice scenarios suggests a mechanism which compensates for increased uncertainty when multiple choices are present by supressing baseline activity. Here, we tracked action representations using corticospinal excitability during four and two-choice perceptual decisions, and modelled them using a sequential sampling framework. We found that the predictions made by leaky competing accumulator models in order to accommodate multiple choices (i.e. reduced baseline activity to compensate increased uncertainty) were borne out by dynamic changes in human action representations. This suggests a direct and continuous influence of interacting evidence accumulators, each favouring a different decision alternative, on downstream corticospinal excitability during complex choice
Recommended from our members
When far is near: ERP correlates of crossmodal spatial interactions between tactile and mirror-reflected visual stimuli
Visuo-tactile integration occurs in a privileged way in peripersonal space, namely when visual and tactile stimuli are in spatial proximity. Here, we investigated whether crossmodal spatial effects (i.e. stronger crossmodal interactions for spatially congruent compared to incongruent visual and tactile stimuli) are also present when visual stimuli presented near the body are indirectly viewed in a mirror, thus appearing in far space. Participants had to attend to one of their hands throughout a block of stimuli in order to detect infrequent tactile target stimuli at that hand while ignoring tactile targets at the unattended hand, all tactile non-target stimuli, and any visual stimuli. Visual stimuli were presented simultaneously with tactile stimuli, in the same (congruent) or opposite (incongruent) hemispace with respect to the tactile stimuli. In one group of participants the visual stimuli were delivered near the participants’ hands and were observed as indirect mirror reflections (‘mirror’ condition), while in the other group these were presented at a distance from the hands (‘far’ condition). The main finding was that crossmodal spatial modulations of ERPs recorded over and close to somatosensory cortex were present in the ‘mirror’ condition but not the ‘far’ condition. That is, ERPs were enhanced in response to tactile stimuli coupled with spatially congruent versus incongruent visual stimuli when the latter were viewed through a mirror. These effects emerged around 190 ms after stimuli onset, and were modulated by the focus of spatial attention. These results provide evidence that visual stimuli observed in far space via a mirror are coded as near-thebody stimuli according to their known rather than to their perceived location. This suggests
that crossmodal interactions between vision and touch may be modulated by previous knowledge of reflecting surfaces (i.e. top-down processing)
Think Beyond the Core : Impact of the Hydrophilic Corona on Drug Solubilization Using Polymer Micelles
Polymeric micelles are typically characterized as core-shell structures. The hydrophobic core is considered as a depot for hydrophobic molecules, and the corona-forming block acts as a stabilizing and solubilizing interface between the core and aqueous milieu. Tremendous efforts have been made to tune the hydrophobic block to increase the drug loading and stability of micelles, whereas the role of hydrophilic blocks is rarely investigated in this context, with poly(ethylene glycol) (PEG) being the gold standard of hydrophilic polymers. To better understand the role of the hydrophilic corona, a small library of structurally similar A-B-A-type amphiphiles based on poly(2-oxazoline)s and poly(2-oxazine)s is investigated by varying the hydrophilic block A utilizing poly(2-methyl-2-oxazoline) (pMeOx; A) or poly(2-ethyl-2-oxazoline) (pEtOx; A*). In terms of hydrophilicity, both polymers closely resemble PEG. The more hydrophobic block B bears either a poly(2-oxazoline) and poly(2-oxazine) backbone with C3 (propyl) and C4 (butyl) side chains. Surprisingly, major differences in loading capacities from A-B-A > A*-B-A > A*-B-A* is observed for the formulation with two poorly water-soluble compounds, curcumin and paclitaxel, highlighting the importance of the hydrophilic corona of polymer micelles used for drug formulation. The formulations are also characterized by various nuclear magnetic resonance spectroscopy methods, dynamic light scattering, cryogenic transmission electron microscopy, and (micro) differential scanning calorimetry. Our findings suggest that the interaction between the hydrophilic block and the guest molecule should be considered an important, but previously largely ignored, factor for the rational design of polymeric micelles.Peer reviewe
Shifts of attention in the early blind: an ERP study of attentional control processes in the absence of visual spatial information
To investigate the role of visual spatial information in the control of spatial attention, event-related brain potentials (ERPs) were recorded during a tactile attention task for a group of totally blind participants who were either congenitally blind or had lost vision during infancy, and for an age-matched, sighted control group who performed the task in the dark. Participants had to shift attention to the left or right hand (as indicated by an auditory cue presented at the start of each trial) in order to detect infrequent tactile targets delivered to this hand. Effects of tactile attention on the processing of tactile events, as reflected by attentional modulations of somatosensory ERPs to tactile stimuli, were very similar for early blind and sighted participants, suggesting that the capacity to selectively process tactile information from one hand versus the other does not differ systematically between the blind and the sighted. ERPs measured during the cue–target interval revealed an anterior directing attention negativity (ADAN) that was present for the early blind group as well as for the sighted control group. In contrast, the subsequent posterior late direction attention negativity (LDAP) was absent in both groups. These results suggest that these two components reflect functionally distinct attentional control mechanisms which differ in their dependence on the availability of visually coded representations of external space
Recommended from our members
ERP correlates of tactile spatial attention differ under intra- and intermodal conditions
To investigate whether the mechanisms underlying endogenous tactile spatial attention differ under pure tactile compared to mixed modality conditions event-related brain potentials (ERPs) were recorded to bilateral tactile and visual cues and tactile imperative stimuli. In the cue-stimulus interval the anterior directing attention negativity (ADAN) was present contralateral to the side of the attentional shift. Importantly, under pure tactile conditions this component persisted until imperative stimulus onset, while it diminished under intermodal conditions. Furthermore, post-tactile stimulus onset attentional modulations were present for the P100 component and later latencies under intermodal conditions. In contrast, under pure tactile conditions attentional modulations only emerged for the N140 component and later latencies. It is suggested that mechanisms underlying attentional orienting and selection are not entirely supramodal but depend in part on the modalities involved
Seasonality of Planktonic Freshwater Ciliates: Are Analyses Based on V9 Regions of the 18S rRNA Gene Correlated With Morphospecies Counts?
Ciliates represent central nodes in freshwater planktonic food webs, and many species show pronounced seasonality, with short-lived maxima of a few dominant taxa while many being rare or ephemeral. These observations are primarily based on morphospecies counting methods, which, however, have limitations concerning the amount and volume of samples that can be processed. For high sampling frequencies at large scales, high throughput sequencing (HTS) of freshwater ciliates seems to be a promising tool. However, several studies reported large discrepancy between species abundance determinations by molecular compared to morphological means. Therefore, we compared ciliate DNA metabarcodes (V9 regions of the 18S rRNA gene) with morphospecies counts for a 3-year study (Lake Zurich, Switzerland; biweekly sampling, n = 74). In addition, we isolated, cultivated and sequenced the 18S rRNA gene of twelve selected ciliate species that served as seeds for HTS analyses. This workflow allowed for a detailed comparison of V9 data with microscopic analyses by quantitative protargol staining (QPS). The dynamics of V9 read abundances over the seasonal cycle corroborated well with morphospecies population patterns. Annual successions of rare and ephemeral species were more adequately characterized by V9 reads than by QPS. However, numbers of species specific sequence reads only partly reflected rank orders seen by counts. In contrast, biomass-based assemblage compositions showed higher similarity to V9 read numbers, probably indicating a relation between cell sizes and numbers / sizes of macronuclei (or 18S rRNA operons). Full-length 18S rRNA sequences of ciliates assigned to certain morphospecies are urgently needed for barcoding approaches as planktonic taxa are still poorly represented in public databases and the interpretation of HTS data depends on profound reference sequences. Through linking operational taxonomic units (OTUs) with known morphospecies, we can use the deep knowledge about the autecology of these species
- …